摘要We report on the observation of Meyer--Neldel rule in glassy Se75Ge20Ag5 alloy where 8710;E is varied by two different methods. In the first approach, the intensity of light varies while measuring the photoconductivity in amorphous thin films of Se75Ge20Ag5 instead of changing composition of the glassy system. In the second approach, the variation of ac conductivity with temperature is found to be exponential and the activation energy is found to vary with frequency.
Abstract:We report on the observation of Meyer--Neldel rule in glassy Se75Ge20Ag5 alloy where 8710;E is varied by two different methods. In the first approach, the intensity of light varies while measuring the photoconductivity in amorphous thin films of Se75Ge20Ag5 instead of changing composition of the glassy system. In the second approach, the variation of ac conductivity with temperature is found to be exponential and the activation energy is found to vary with frequency.
R. S. Sharma;N. Mehta;A. Kumar. Thermally Activated Photoconduction and Alternating-Current Conduction in Se75Ge20Ag5 Chalcogenide Glass: Investigation of Meyer--Neldel Rule[J]. 中国物理快报, 2008, 25(11): 4079-4082.
R. S. Sharma, N. Mehta, A. Kumar. Thermally Activated Photoconduction and Alternating-Current Conduction in Se75Ge20Ag5 Chalcogenide Glass: Investigation of Meyer--Neldel Rule. Chin. Phys. Lett., 2008, 25(11): 4079-4082.
[1] Meyer W and Neldel H 1937 Z. Tech. Phys. 12 588 [2] Carlson D E and Wronski C R 1979 Amorphous Semiconductors ed Brodsky M H (Springer: New York) [3] Spear W E, Allan D, Lecomber P and Gaith A 1980 Phil. Mag. B 41 419 [4] Staebler D L and Wronski C R 1977 Appl. Phys. Lett. 21 292 [5] Tanielian M 1982 Phil. Mag. B 45 435 [6] Crandall R S 1991 Phys. Rev. B 43 4057 [7] Anderson D A and Paul W 1982 Phil. Mag. B 45 1 [8] Drusedau T and Bindemann R 1986 Phys. Status Solidi A 136 61 [9] Fortner J, Karpov V G and Saboungi M 1995 Appl. Phys. Lett. 66 997 [10] Wang J C and Chen Y F 1998 Appl. Phys. Lett. 73 948 [11] Arora R and Kumar A 1991 Phys. Status Solidi A 125 273 [12] Dwivedi S K, Dixit M and Kumar A 1998 J. Mater. Sci. Lett. 17 233 [13] Yelon A and Movaghar B 1997 Appl. Phys. Lett. 71 3549 [14] Shimakawa K and Abdel-Wahab F 1997 Appl. Phys. Lett. 70 652 [15] Abd-El Mongy A 2001 Egypt. J. Sol. 24 1 [16] El-Kady Y L A 2001 Physica B 305 259 [17] Roberts G G 1971 J. Phys. C 4 3167 [18] Kushwaha V S, Mehta N, Kushwaha N and Kumar A 2005 J. Optoelectron. Adv. Mater. 7 2035 [19] Rose A 1963 Concepts In Photoconductivity and Allied Problems (New York: John Wiley) [20] Abdel-Wahab F 2002 J. Appl. Phys. 91 265 [21] Abdel-Wahab F 2004 Turk. J. Phys. 28 133 [22] Jackson W B 1988 Phys. Rev. B 38 3595 [23] Yelon A and Movaghar B 1990 Phys. Rev. Lett. 65 618 [24] Boisvert G, Levis L J and Yelon A 1995 Phys. Rev. Lett. 75 469 [25] You D, Schnyders H S and Zytveld J B 1997 J. Phys: Condens. Matter 9 1407 [26] Dyre J C 1986 J. Phys. C 19 5655 [27] Chen YF and Huang S F 1991 Phys. Rev. B 44 13775 [28] Elliot S R 1977 Philos. Mag. B 36 1291 [29] Shimakawa K 1982 Philos. Mag. B 46 123 [30] Dyre J C 1988 J. Appl. Phys. 64 2456 [31] Hvam J M and Brodsky M H 1981 Phys. Rev. Lett. 46 371 [32] Dyre J C 1988 J. Phys. C 21 2431 [33] Macdonald J R 1985 J. Appl. Phys. 58 1955