Structural, Elastic and Electronic Properties of ReO2
LI Yan-Ling1,2,3, ZENG Zhi2
1Department of Physics, Xuzhou Normal University, Xuzhou 2211162Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 2300313Graduate School of the Chinese Academy of Sciences, Beijing 100049
Structural, Elastic and Electronic Properties of ReO2
LI Yan-Ling1,2,3, ZENG Zhi2
1Department of Physics, Xuzhou Normal University, Xuzhou 2211162Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 2300313Graduate School of the Chinese Academy of Sciences, Beijing 100049
Structural, elastic and electronic properties of ReO2 are investigated by first-principles calculations based on density functional theory. The ground state of ReO2 has an orthorhombic symmetry which belongs to space group Pbcn with a=4.7868Å b=5.5736Å, and c=4.5322Å. The calculated bulk moduli are 322GPa, 353GPa, and 345GPa for orthorhombic, tetragonal, and monoclinic ReO2, respectively, indicating that ReO2 has a strong incompressibility. ReO2 is a metal ductile solid and presents large elastic anisotropy. The obtained Debye temperatures are 850K for orthorhombic, 785K for tetragonal, and 791K for monoclinic ReO2.
Structural, elastic and electronic properties of ReO2 are investigated by first-principles calculations based on density functional theory. The ground state of ReO2 has an orthorhombic symmetry which belongs to space group Pbcn with a=4.7868Å b=5.5736Å, and c=4.5322Å. The calculated bulk moduli are 322GPa, 353GPa, and 345GPa for orthorhombic, tetragonal, and monoclinic ReO2, respectively, indicating that ReO2 has a strong incompressibility. ReO2 is a metal ductile solid and presents large elastic anisotropy. The obtained Debye temperatures are 850K for orthorhombic, 785K for tetragonal, and 791K for monoclinic ReO2.
[1] Rogers D B, Shannon R D, Sleight A W and Gillson J L 1969 Inorg. Chem. 8 841 [2] Xu J H, Jarlborg T and Freeman A J 1989 Phys. Rev. B 40 7939 [3] Desgreniers S and Lagarec K 1999 Phys. Rev. B 59 8467 [4] Dubrovinsky L S, Dubrovinskaia N A, Swamy V, Muscat J, Harrison N M, Ahuja R, Holm B and Johansson B 2001 Nature 410 653 [5] Lowther J E 2003 MRS Bull. 28 189 [6] Kang J, Lee E C and Chang K J 2003 Phys. Rev. B 68 054106 [7] Almeida J S de and Ahuja R 2006 Phys. Rev. B 73 165102 [8] Bohnen K -P, Heid R, Seaman de la Pe$\tilde{n$a, Renker B, Adelmann P and Schober H 2007 Phys. Rev. B 75 092301 [9] Swamy V and Muddle B C 2007 Phys. Rev. Lett. 98 035502 [10] Xing J, Wang X, Zhao K, Li J, Jin\,K J, He M, Zheng D N and L\"{u H B 2007 Chin. Phys. Lett. 24 530 [11] Magneli A 1957 Acta Chem. Scand. 11 28 [12] Ivanovskii A L, Chupakhina T I, Zubkov V G, Tyutyunnik A P, Krasilnikov V N, Bazuev G V, Okatov S V, Lichtenstein A I 2005 Phys. Lett. A 348 66 [13] Corr\^{ea H P S, Cavalcante I P, Martinez L G, Orlando C G P and Orlando M T D 2004 Braz. J. Phys. 34 1208 [14] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Cond. Matt. 14 2717 [15] Hill R 1952 Proc. Phys. Soc. London 65 349 [16] Birch F 1947 Phys. Rev. 71 P809 [17] Tse J S, Klug D D, Uehara\,K and Li Z Q 2000 Phys. Rev. B 61 10029 [18] Desgreniers S and Lagarec K 1999 Phys. Rev. B 59 8467 [19] Ravindran P, Fast L, Korzhavyi P A, Johansson B, Wills J and Eriksson O 1998 J. Appl. Phys. 84 4891 [20] Pugh S F 1954 Philos. Mag. 45 823