Quasi-Random Resistor Network Model for Linear Magnetoresistance of Metal--Semiconductor Composite
XU Jie1,2, ZHANG Duan-Ming1, DENG Zong-Wei1, YANG Feng-Xia1, LI Zhi-Hua1, PAN Yuan2
1School of Physics, Huazhong University of Science and Technology, Wuhan 4300742College of Electric and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074
Quasi-Random Resistor Network Model for Linear Magnetoresistance of Metal--Semiconductor Composite
XU Jie1,2, ZHANG Duan-Ming1, DENG Zong-Wei1, YANG Feng-Xia1, LI Zhi-Hua1, PAN Yuan2
1School of Physics, Huazhong University of Science and Technology, Wuhan 4300742College of Electric and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074
A new model for the linear magentoresistance (MR) of the Ag2+δSe and Ag2+δ Te thin films is proposed. The thin film is considered as a metal--semiconductor composite and dispersed into an N×N quasi-random resistor network. The network is constructed from four-terminal resistors and the mobility of carries μ within the network has a quasi-random distribution, i.e. a Gaussian distribution with two constraint conditions. The model predicts that the MR increases with the increasing magnetic fields, and increases linearly at high field. Moreover, the MR decreases with the increasing temperatures. A good agreement between the theoretical MR and the available experimental data is found.
A new model for the linear magentoresistance (MR) of the Ag2+δSe and Ag2+δ Te thin films is proposed. The thin film is considered as a metal--semiconductor composite and dispersed into an N×N quasi-random resistor network. The network is constructed from four-terminal resistors and the mobility of carries μ within the network has a quasi-random distribution, i.e. a Gaussian distribution with two constraint conditions. The model predicts that the MR increases with the increasing magnetic fields, and increases linearly at high field. Moreover, the MR decreases with the increasing temperatures. A good agreement between the theoretical MR and the available experimental data is found.
XU Jie;ZHANG Duan-Ming;DENG Zong-Wei; YANG Feng-Xia;LI Zhi-Hua;PAN Yuan. Quasi-Random Resistor Network Model for Linear Magnetoresistance of Metal--Semiconductor Composite[J]. 中国物理快报, 2008, 25(11): 4124-4127.
XU Jie, ZHANG Duan-Ming, DENG Zong-Wei, YANG Feng-Xia, LI Zhi-Hua, PAN Yuan. Quasi-Random Resistor Network Model for Linear Magnetoresistance of Metal--Semiconductor Composite. Chin. Phys. Lett., 2008, 25(11): 4124-4127.
[1] Xu R, Husmann A, Rosenbaum T F, Saboungi M L, Enderby J E and Littlewood P B 1997 Nature 390 57 [2]Abrikosov A A 1998 Phys. Rev. B 58 2788 [3]Abrikosov A A 2000 Europhys. Lett. 49 789 [4]Guttal V and Stroud D 2005 Phys. Rev. B 71 201304(R) [5]Guttal V and Stroud D 2006 Phys. Rev. B 73 085202 [6]Magier R and Bergman D J 2006 Phys. Rev. B 74 094423 [7]Bulgadaev S A and Kusmartsev F V 2005 Phys. Lett. A 342 188 [8]Bulgadaev S A 2003 Europhys. Lett. 64 482 cond-mat/0410058 [9]Parish M M and Littlewood P B 2003 Nature 426 162 [10]Parish M M and Littlewood P B 2005 Phys. Rev. B 72 094417 [11]Beck G, Korte C, Janek J, Gruhl F and Kreutzbruck M 2004 J. Appl. Phys. 96 5619 [12]Beck G and Janek J 2001 Physica B 308--310 1086 [13]Kreutzbruck M, Mogwitz B, Gruhl F, Kienle L, Korte C and Janek J 2005 Appl. Phys. Lett. 86 072102 [14]Beck G and Janek J 2008 Solid State Sci. doi: 10.1016/j.SolidStateSciences.2008.01.002 [15]Gerritsen A N 1956 Metallic Conductivity, Handbuch der Physik, Band X$\!$I$\!$X, (Berlin: Springer) [16]Janek J, Mogwitz B, Beck G, Kreutzbruck M, Kienle L and Korte C 2004 Prog. Solid State Chem. 32 179 [17] Haberkorn N and Guimpel J 2005 Appl. Phys. Letts. 87 042509 [18] Junod P 1959 Helv. Phys. Acta 32 567 [19] Husmann A, Betts J B, Boebinger G S, Miglior A, Rosanbaum T F and Saboungi M L 2002 Nature 417 421 [20]Liang B Q, Chen X, Wang Y J and Tang Y J 2000 Phys. Rev. B 61 3239 [21]Mogwitz B, Korte C, Janek J, Kreutzbruck M and Kienle L 2007 J. Appl. Phys. 101 043510