摘要We report on the ultrafast third-order optical nonlinearity in multilayer Au/TiO2 composite films fabricated on quartz substrates by pulsed laser deposition technique. The linear optical properties of the films are determined and optical absorption peaks due to surface plasmon resonance of Au particles are observed at about 590nm. The third-order optical nonlinearities of the films are investigated by z-scan method using a femtosecond laser (50fs) at the wavelength of 800nm. The sample showed fast nonlinear optical responses with nonlinear absorption coefficient and nonlinear refractive index being -3.66×10-10m/W and -2.95×10-17m2/W, respectively. The results also show that the nonlinear optical effects increase with the increasing Au concentration in the composite films.
Abstract:We report on the ultrafast third-order optical nonlinearity in multilayer Au/TiO2 composite films fabricated on quartz substrates by pulsed laser deposition technique. The linear optical properties of the films are determined and optical absorption peaks due to surface plasmon resonance of Au particles are observed at about 590nm. The third-order optical nonlinearities of the films are investigated by z-scan method using a femtosecond laser (50fs) at the wavelength of 800nm. The sample showed fast nonlinear optical responses with nonlinear absorption coefficient and nonlinear refractive index being -3.66×10-10m/W and -2.95×10-17m2/W, respectively. The results also show that the nonlinear optical effects increase with the increasing Au concentration in the composite films.
LONG Hua;YANG Guang;CHEN Ai-Ping;LI Yu-Hua;LU Pei-Xiang. Multilayer Au/TiO2Composite Films with Ultrafast Third-Order Nonlinear Optical Properties[J]. 中国物理快报, 2008, 25(11): 4135-4138.
LONG Hua, YANG Guang, CHEN Ai-Ping, LI Yu-Hua, LU Pei-Xiang. Multilayer Au/TiO2Composite Films with Ultrafast Third-Order Nonlinear Optical Properties. Chin. Phys. Lett., 2008, 25(11): 4135-4138.
[1] Huang W Y, Qian W and El-Sayed M A 2004 Nano. Lett. 4 1741 [2] Link S, Mohamed M B and El-Sayed M A 1999 J. Phys. Chem. B 103 3073 [3] Ricard D, Roussignol P and Flytzanis C 1985 Opt. Lett. 10 511 [4] Tanahashi I, Manabe Y, Tohda T, Sasaki S and Nakamura A 1996 J. Appl. Phys. 79 1244 [5] Hache H, Ricard D and Flytzanis C 1986 J. Opt. Soc. Am. B 3 1647 [6] Liao H B, Wen W and Won G K L 2005 Appl. Phys. A 80 861 [7] Wang W T, Chen Z H, Yang G, Guan D Y, Yang G Z, Zhou Y L and Lu H B 2003 Appl. Phys. Lett. 83 1983 [8] Zhou Z K, Li M, Su X R, Zhai Y Y, Song H, Han J B and Hao Z H 2008 Phys. Status Solidi A 205 345 [9] Ma G H and Tang S H 2007 Opt. Lett. 32 3435 [10] Han J B, Zhou H J and Wang Q Q 2006 Mater. Lett. 60 252 [11] Wang Q Q, Wang S F, Hang W T and Gong Q H 2005 J. Phys. D: Appl. Phys. 38 389 [12] Ticha H and Tichy L 2002 J. Optoelectron. Adv. Mater. 4 381 [13] Sheik-Bahae M, Said A A, Wei T H, Hagan D J and Van Stryland E W 1990 IEEE J. Quantum Electron. 26 760 [14] Ricard D, Roussignol P, Flytzanis C 1985 Opt. Lett. 10 511 [15] Liao H B, Xiao R F, Fu J S, Yu P, Wong G K L and Sheng P 1997 Appl. Phys. Lett. 70 1 [16] Sheng P 1980 Phys. Rev. Lett. 45 60 [17] Liao H B, Lu W X, Yu S W, Wen W J and Wong K L 2005 J. Opt. Soc. Am. B 22 1923 [18] Yang G, Zhou Y H, Long H, Li Y H and Yang Y F 2007 Thin Solid Films 515 7926