Periodic Homoclinic Wave of (1+1)-Dimensional Long--Short Wave Equation
LI Dong-Long1, DAI Zheng-De1,2,GUO Yan-Feng1
1Department of Information and Computing Science, Guangxi University of Technology, Liuzhou 5450062 School of Mathematics and Physics, Yunnan University, Kunming 650091
Periodic Homoclinic Wave of (1+1)-Dimensional Long--Short Wave Equation
LI Dong-Long1, DAI Zheng-De1,2,GUO Yan-Feng1
1Department of Information and Computing Science, Guangxi University of Technology, Liuzhou 5450062 School of Mathematics and Physics, Yunnan University, Kunming 650091
摘要The exact periodic homoclinic wave of (1+1)D long--short wave equation is obtained using an extended homoclinic test technique. This result shows complexity and variety of dynamical behaviour for a (1+1)-dimensional long--short wave equation.
Abstract:The exact periodic homoclinic wave of (1+1)D long--short wave equation is obtained using an extended homoclinic test technique. This result shows complexity and variety of dynamical behaviour for a (1+1)-dimensional long--short wave equation.
[1] Guckenheimer J and Holmes P 1990 Applied MathematicalSciences (New York: Springer) [2] Wiggins S 1988 Global Bifurcation andChaos-analytical Methods (New York: Springer) [3] Li Y 1999 J Nonlin. Sci. 9 363 [4] Bishop A R, Fesser K, Lomdahl P S, Kerr W C, Willams M Sand Tullinger S E 1983 Phys. Rev. Lett. 50 1095 [5] McLaughlin D W and Venice S J 1996 Proc. Sympos.Appl. Math. 54 281 [6] Shatah J and Zeng C 2000 Comm. Pure Appl. Math.53 283 [7] Rothos VM. 1999 J. Phys. A: Math. Gen. 32 6409 [8] McLaughlin D W and Overman II E A 1995 Surveysin Applied Mathematics (New York: Plenum) [9] Li Y, McLaughlin DW, Shatah J and Wiggins S 1996 {\itComm. Pure Appl.Math. 49 1175 [10] Calini A, Ercolani N M, McLaughlin D W and Schober C M1996 Physica D 89 227 [11] Rothos V M, Antonopoulos C and Drossos L 2002 Int.J. Bifur. Chaos Appl. Sci. Eng. 12 1743 [12] Hirota R 1971 Phys. Rev. Lett. 27 1192 [13] Miurs M R 1978 Backlund Transformation (Berlin:Springer) [14] Weiss J, Tabor M and Garnevale G 1983 J. Math.Phys. 24 522 [15] Yan C 1996 Phys. Lett. A 224 77 [16] Wang M L 1996 Phys. Lett. A 213 279 [17] El-Shabed M 2005 Int. J. Nonlinear Sci. Numer.Simul. 6 163 [18] He J H 1999 Int. J. Nonlin. Mech. 34 699 [19] Abassy T A, El-Tawil M A and Saleh H K 2004 Int. J.Nonlin. Sci. Numer. Simul. 5 327 [20] Zayad E M E, Zedan H A and Gepreel K A 2004 Int. J.Nonlin. Sci. Numer. Simul. 5 221 [21] HumJ Q 2005 Chaos Solitons Fract. 23 391 [22] Liu S K, Fu Z T and Zhao Q 2001 Phys. Lett. A {\bf289 69 [23] Liu J B and Yang K Q 2004 Chaos Solitons Fract.22 111 [24]Shek E C M and Chow K W 2008 Chaos Solitons Fract.36 296 [25] Ablowitz M J and Clarkson P A 1991 Solitons,Nonlinear Evolution Equations and Inverse Scattering (Cambridge:Cambridge University Press) [26] Dai Z D, Huang J, Jiang M R and Wang S H 2005 ChaosSolitons Fract. 26 1189 [27] Dai Z D, Jiang M R, Dai Q Y and Li S L 2006 Chin.Phys. Lett. 23 1065 [28] Dai Z D, Huang J and Jiang M R 2006 Phys. Lett. A352 411 [29] Dai Z D, Li S L, Li D L and Zhu A J 2007 Chin. Phys.Lett. 24 1429 [30] Dai Z D, Zhu A J, Li S L and Li D L 2007 Chin. J.Phys. 45 62 [31] Dai Z D, Liu Z J and Li D L 2008 Chin. Phys. Lett.25(5) 1531 [32] Dai Z D, Li Z T, Liu Z J and Li D L 2008 Phys. Lett. A 372 3010 [33] Djordjevic V D and Redekopp L G 1977 J. FluidMech. 79 703