High Power Continuous-Wave Diode-End-Pumped 1.34-μm Nd:GdVO4 Laser
ZHOU Rui1,2, RUAN Shuang-Chen1, DU Chen-Lin1, YAO Jian-Quan2
1Shenzhen Key Laboratory of Laser Engineering, College of Electronic Science and Technology, Shenzhen University, Shenzhen 5180602College of Precision Instrument and Optoelectronics Engineering, Institute of Laser and Optoelectronics, Tianjin University, Tianjin 300072
High Power Continuous-Wave Diode-End-Pumped 1.34-μm Nd:GdVO4 Laser
ZHOU Rui1,2, RUAN Shuang-Chen1, DU Chen-Lin1, YAO Jian-Quan2
1Shenzhen Key Laboratory of Laser Engineering, College of Electronic Science and Technology, Shenzhen University, Shenzhen 5180602College of Precision Instrument and Optoelectronics Engineering, Institute of Laser and Optoelectronics, Tianjin University, Tianjin 300072
摘要A high power cw all-solid-state 1.34-μm Nd:GdVO4 laser is experimentally demonstrated. With a diode-double-end-pumped configuration and a simple plane-parallel cavity, a maximum output power of 27.9W is obtained at incident pump power of 96W, introducing a slope efficiency of 35.4%. To the best of our knowledge, this is the highest output power of diode-end-pumped 1.3-μm laser. With the experimental data, the thermal-stress-resistance figure of merit of Nd:GdVO4 crystal with 0.3at% Nd3+ doped level is calculated to be larger than 9.94W/cm.
Abstract:A high power cw all-solid-state 1.34-μm Nd:GdVO4 laser is experimentally demonstrated. With a diode-double-end-pumped configuration and a simple plane-parallel cavity, a maximum output power of 27.9W is obtained at incident pump power of 96W, introducing a slope efficiency of 35.4%. To the best of our knowledge, this is the highest output power of diode-end-pumped 1.3-μm laser. With the experimental data, the thermal-stress-resistance figure of merit of Nd:GdVO4 crystal with 0.3at% Nd3+ doped level is calculated to be larger than 9.94W/cm.
[1] Inoue Y and Fujikawa S 2000 IEEE J. QuantumElectron. 36 751 [2] Zhu H Y, Huang C H, Zhang G, Wei Y, Huang L X, Chen J,Chen W D and Chen Z Q 2007 Opt. Commun. 270 296 [3] Tucker A W, Birnbaum M and Fincher C L 1976 J. Appl.Phys. 47 232 [4] Ennaroglu A 1999 Opt. Commun. 164 191 [5] Du C L, Qin L J, Meng X N, Xu G B, Wang Z P, Xu X Q, ZhuL, Xu B C and Shao Z S 2002 Opt. Commun. 212 177 [6] Zhang H J, Du C L, Wang J Y, Hu X B, Xu X Q, Dong C M, LiuJ H, Kong H K, Jiang H D, Han R J, Shao Z S and Jiang M H 2003 J. Crystal Growth 249 492 [7] He J L, Yang J M and Liu J 2005 Opt. Laser Technol. 37 612 [8] Ogilvy H, Withford M J, Dekker P and Piper J A 2003 Opt. Express 11 2411 [9] Lieto A D, Minguzzi P, Pirastu A and Magni V 2003 IEEE J. Quantum Electron. 39 903 [10] Yao A Y, Hou W, Kong Y P, Guo L, Wu L A, Li R N, Cui D F,Xu Z Y, Bi Y and Zhou Y 2005 J. Opt. Soc. Am. B 22 2129 [11] Zhang H J, Wang J Y, Du C L, Xu X Q, Liu J H, Hu X B,Shao Z S and Jiang M H 2005 J. Crystal Growth 275 e687 [12] Du C, Ruan S, Zhang H, Yu Y, Zeng F, Wang J and Jiang M2005 Appl. Phys. B 80 45 [13] Chen Y F 1999 IEEE J. Quantum Electron. 35234