Dynamics of Vortex-Wave under a Travelling-Wave Modulation
WU Ning-Jie1, MA Jun2, CUI Jing-An1, YING He-Ping3
1School of Mathematics and Computer Science, Nanjing Normal University, Nanjing 2100972School of Science, Lanzhou University of Technology, Lanzhou 7300503Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027
Dynamics of Vortex-Wave under a Travelling-Wave Modulation
WU Ning-Jie1, MA Jun2, CUI Jing-An1, YING He-Ping3
1School of Mathematics and Computer Science, Nanjing Normal University, Nanjing 2100972School of Science, Lanzhou University of Technology, Lanzhou 7300503Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027
摘要The mechanism of destabilization is studied for the rotating vortices (scroll waves and spiral waves) in excitable media induced by a parameter modulation in the form of a travelling-wave. It is found that a rigid rotating spiral in the two-dimensional (2D) system undergoes a synchronized drift along a straight line, and a 3D scroll ring with its filament closed into a circle can be reoriented only if the direction of wave number of a travelling-wave perturbation is parallel to the ring plane. Then, in order to describe the behaviour of the synchronized drift of spiral wave and the reorientation of scroll ring, the approximate formulas are given to exhibit qualitative agreements with the observed results.
Abstract:The mechanism of destabilization is studied for the rotating vortices (scroll waves and spiral waves) in excitable media induced by a parameter modulation in the form of a travelling-wave. It is found that a rigid rotating spiral in the two-dimensional (2D) system undergoes a synchronized drift along a straight line, and a 3D scroll ring with its filament closed into a circle can be reoriented only if the direction of wave number of a travelling-wave perturbation is parallel to the ring plane. Then, in order to describe the behaviour of the synchronized drift of spiral wave and the reorientation of scroll ring, the approximate formulas are given to exhibit qualitative agreements with the observed results.
WU Ning-Jie;MA Jun;CUI Jing-An;YING He-Ping. Dynamics of Vortex-Wave under a Travelling-Wave Modulation[J]. 中国物理快报, 2008, 25(12): 4207-4210.
WU Ning-Jie, MA Jun, CUI Jing-An, YING He-Ping. Dynamics of Vortex-Wave under a Travelling-Wave Modulation. Chin. Phys. Lett., 2008, 25(12): 4207-4210.
[1] Cross M C et al 1993 Rev. Mod. Phys. 65 851 [2] Winfree A T 1972 Science 175 634 [3] Field R J and Burger M 1985 Oscillations andTraveling Waves in Chemical Systems (New York: Wiley) [4] Jakubith S et al 1990 Phys. Rev. Lett. 653013 [5] Davidenko J M et al 1992 Nature 355 349 [6] Fenton F 2000 IEEE Comput. Cardiology 27251 [7] Hastings H, Fenton F et al 2000 Phys. Rev. E {\bf62 4043 [8] Keener J and Sneyd J 1998 Mathematical Physiology(Berlin: Springer) [9] Lorente de N\'{o R et al 1959 Proc. Natl. Acad.Sci. U.S.A. 45 592 [10] Rappel W J et al 1999 Phys. Rev. Lett. 83 456 [11] Fenton Fand Karma A 1998 Phys. Rev. Lett. 81481 [12] Markus M et al 1992 Science 257 225 [13] Schlesner J et al 2008 New J. Phys. 10015003 [14] Steinbock O et al 1992 Phys. Rev. Lett. 68248 [15] Mikhailov A S et al 2006 Phys. Rep. 425 79 [16] Steinbock O, Zykov V and M\"{uller S C 1993 Nature366 322 [17] Sakaguchi H and Fujimoto T 2003 Phys. Rev. E {\bf67 067202 [18] Markus M et al 1992 Science 257 255 [19] Zhang H J et al 2005 Chin. Phys. Lett. 22 287 [20] Wang P Y, Xie P and Yin H W 2003 Chin. Phys. {\bf12 674 [21] Zykov S et al 2006 Europhys. Lett. 73 335 [22] Li B W et al 2007 Chin. Phys. Lett. 24 2415 [23] Brazhnik P K et al 1987 Sov. Phys. JETP 66984 [24] Alonso S et al 2003 Science 299 1722 [25] Vinson M et al 1997 Nature 386 477 [26] Chen J X et al 2006 J. Chem. Phys. 124 014505 [27] Zhang H, Wu N J et al 2004 J. Chem. Phys. 1217276 [28] Zhang H, Hu B et al 2003 J. Chem. Phys. 1194468 [29] Wu N J, Zhang H et al 2006 Phys. Rev. E 73R060901