摘要Self-phase modulation can efficiently shape the spectrum of an optical pulse propagating along an optical material with Kerr nonlinearity. In this work we show that a one-dimensional Kerr nonlinear photonic crystal can impose anomalous spectrum modulation to a high-power ultrashort light pulse. The spectrum component at the photonic band gap edge can be one order of magnitude enhanced in addition to the ordinary spectrum broadening due to self-phase modulation. The enhancement is strictly pinned at the band gap edge by changing the sample length, the intensity or central wavelength of the incident pulse. The phenomenon is attributed to band gap induced enhancement of light-matter interaction.
Abstract:Self-phase modulation can efficiently shape the spectrum of an optical pulse propagating along an optical material with Kerr nonlinearity. In this work we show that a one-dimensional Kerr nonlinear photonic crystal can impose anomalous spectrum modulation to a high-power ultrashort light pulse. The spectrum component at the photonic band gap edge can be one order of magnitude enhanced in addition to the ordinary spectrum broadening due to self-phase modulation. The enhancement is strictly pinned at the band gap edge by changing the sample length, the intensity or central wavelength of the incident pulse. The phenomenon is attributed to band gap induced enhancement of light-matter interaction.
(Beam trapping, self-focusing and defocusing; self-phase modulation)
引用本文:
LIU Ye;ZHOU Fei;ZHANG Dao-Zhong;LI Zhi-Yuan. Energy Squeeze of Ultrashort Light Pulse by Kerr Nonlinear Photonic Crystals[J]. 中国物理快报, 2009, 26(1): 14208-014208.
LIU Ye, ZHOU Fei, ZHANG Dao-Zhong, LI Zhi-Yuan. Energy Squeeze of Ultrashort Light Pulse by Kerr Nonlinear Photonic Crystals. Chin. Phys. Lett., 2009, 26(1): 14208-014208.
[1] Inouue K and Ohtaka K 2004 Photonic Crystals:Physics, Fabrication and Applications (Berlin: Springer) [2] Joannopoulos J D, Meade R D and Winn J N 1995 Photonic Crystals(Princeton: Princeton University Press) [3] Berger V 1998 Phys. Rev. Lett. 81 4136 [4] Li J J, Li Z Y, Sheng Y and Zhang D Z 2007 Appl.Phys. Lett. 91 022903 [5] Li J J, Li Z Y and Zhang D Z 2007 Phys. Rev. E 75 056605 [6] Scalora M, Dowling J P, Bowden C M and Bloemer M J 1994 Phys. Rev. Lett. 73 1368 [7] Scalora M 1994 J. Opt. Soc. Am. B 11 770 [8] Tran P 1995 Phys. Rev. B 52 10673 [9] Tran P 1997 J. Opt. Soc. Am. B 14 2589 [10] Li Q M and Chen C T 1996 Phys. Rev. B 5315577 [11] Lan S, Chen X W, Chen J D and Lin X S 2005 Phys.Rev. B 71 125122 [12] Lan S, Gopal A V, Kanamoto K and Ishikawa H 2004 Appl. Phys. Lett. 84 5124 [13] Soljacic M, Luo C Y, Joannopoulos J D and Fan S H 2003 Opt. Lett. 28 637 [14] Yanik M F, Fan S H and Soljacic M 2003 Appl. Phys.Lett. 83 2739 [15] Hu X Y, Gong Q H, Liu Y H, Cheng B Y and Zhang D Z 2005 Appl. Phy. Lett. 87 231111 [16] Liu Y H, Hu X Y, Zhang D X, Cheng B Y, Zhang D Z and MengQ B 2005 Appl. Phy. Lett. 86 151102 [17] Zhang D Z, Liu Y H, Tian J, Feng S, Zhang D X and Cheng BY 2006 Proc. SPIE 6353 635307 [18] Agrawal G P 2000 Nonlinear Fiber Optics 3rd edn(Singapore: Elsevier) chap 4 pp 97--130 [19] Konorov S O, Sidorov-Biryukov D A and Zheltikov A M 2004 Appl. Phy. Lett. 85 3690 [20] Liu Y, Zheng Z Y, Qin F, Zhou F, Zhou C Z, Zhang D Z,Meng Q B and Li Z Y 2008 Chin. Phys. Lett. 25 4019 [21] Du G Q, Jiang H T, Li H Q, Zhang Y W and Chen H 2008 Chin. Phys. Lett. 25 2900 [22] Cai X H, Lin X S and Lan S 2008 Chin. Phys. Lett. 25 2085 [23] Karasawa N, Takei T and Yamaguchi K 2006 Opt.Commun. 261 276 [24] Oda H, Inoue K, Tanaka Y, Ikeda N, Sugimoto Y, Ishikawa Hand Asakawa K 2007 Appl. Phy. Lett. 90 231102 [25] Dulkeith E and Vlasov Y A 2006 Opt. Express 14 5524 [26] Nakamura H, Sugimoto Y, Kanamoto K, Ikeda N, Tanaka Y,Nakamura Y, Ohkouchi S, Watanabe Y, Inoue K, Ishikawa H and AsakawaK 2004 Opt. Express 12 6606