摘要We obtain the bound-state energy of the Klein--Gordon equation for some examples of quasi-exactly solvable potentials within the framework of asymptotic iteration method (AIM). The eigenvalues are calculated for type-1 solutions. The whole quasi-exactly solvable potentials are generated from the defined relation between the vector and scalar potentials.
Abstract:We obtain the bound-state energy of the Klein--Gordon equation for some examples of quasi-exactly solvable potentials within the framework of asymptotic iteration method (AIM). The eigenvalues are calculated for type-1 solutions. The whole quasi-exactly solvable potentials are generated from the defined relation between the vector and scalar potentials
Eser Olgar. An Alternative Method for Calculating Bound-State of Energy Eigenvalues of Klein-Gordon for Quasi-exactly Solvable Potentials[J]. 中国物理快报, 2009, 26(2): 20302-020302.
Eser Olgar. An Alternative Method for Calculating Bound-State of Energy Eigenvalues of Klein-Gordon for Quasi-exactly Solvable Potentials. Chin. Phys. Lett., 2009, 26(2): 20302-020302.
[1] Hou C F, Sun X D, Zhou Z X and Y Li 1999 Acta Phys.Sin. 48 385 (in Chinese) Hou C F and Zhou Z X 1999 Acta Phys. Sin. (OverseasEdition) 8 561 [2] Chen C 1999\ Acta Phys. Sin. 48 385 (inChinese) Chen C et al. 2003 Acta Phys. Sin. 52 1579 (inChinese) [3] Qiang W C 2002\ Chinese Physics 11 757 Qiang WC 2003 Chin. Phys. 12 1054 [4] Hu S Z and Su R K 1991 Acta Phys. Sin. 40 1201(in Chinese) [5] E\u{grifes H, Demirhan D and B\"{uy\"{ukk\i l\i \c{c F1999 Phys. Scripta 60 195 [6] Jia C S et al 2003 Phys. Lett. A 311 115 [7] Yi L Z et al 2004 Phys. Lett. A 333 212 [8] Dominguez-Adame F 1989 Phys. Lett. A 136 175 [9] Chen G 2004 Phys. Scripta 69 257 Chen G, Chen Z D and Lou Z M 2004 Phys. Lett. A 331 374 [10] Cao Z Q et al 2001 Phys. Rev. A 63 0544103 [11] He Y, Cao Z Q and Shen Q S 2004 Phys. Lett. A 326 315 [12] Liang Z et al 2005 Chin. Phys. Lett. 22 2465 [13] Ol\u{gar E 2008 Chin. Phys. Lett. 25 1939 [14] \c{Cift\c{ci H, Hall R L and Saad N 2003 J. Phys.A: Math. Gen. 36 11807 [15] Barakat T, Abodayeh K and Mukheimer A 2005 J. Phys.A: Math. Gen. 38 1299 Barakat T 2005 Phys. Lett. A 344 411 [16] Fernandez F M 2004 J. of Phys. A: Math. Gen. 37 6173 [17] Saad N, Hall R L and \c{Cift\c{ci H 2006 J. Phys.A: Math. Gen. 39 8477 \c{Cift\c{ci H, Hall R\ L and Saad N 2005 J. Phys. A:Math. Gen. 38 1147 [18] Boztosun I et al. 2006 J. Math. Phys. 47062301 Bayrak O and Boztosun I 2006 J. Phys. A: Math. Gen. 39 6955 [19] Barakat T 2006 Int. J. Mod. Phys. A\ 21 4127 [20] Amore P and Fernandez F M 2006 J. Phys. A: Math.Gen. 39 10491 [21] Soylu A, Bayrak O Boztosun I 2006 Int. J. Mod.Phys. E 21 1263 [22] Bayrak O, Boztosun I and \c{Cift\c{ci H 2007 Int.J. Quant. Chem. 107 540 [23] Ol\u{gar E, Ko\c{c R and T\"{ut\"{unc\"{uler H 2008 Phys. Scripta 78 015011 [24] Soylu A, Bayrak O and Boztosun I 2008 Chin. Phys.Lett. 25 2754 [25] Saad N, Hall R L and \c{Cift\c{ci H 2008 Cent.Eur. J. Phys. 6 717 [26] Taskin F, Boztosun I and Bayrak O 2008 Int. J.Theor. Phys. 47 1612 [27] Turbiner A V 1988 Comm. Math. Phys. 118 467 [28] Natanzon G A 1979 Theor. Math. Phys. 38 146 [29] Gangopadhyaya A, Khare A and Sukhatme U P 1995 Phys.Lett. A 208 261 [30] Eisenhart L P 1948 Phys. Rev. 74 87 Razavy M 1980 Am. J. Phys. 48 285 [31] Ko\c{c R, T\"{ut\"{unc\"{uler H and Ol\u{gar E 2004 Chin. J. Phys. 42 575 Ko\c{c R, T\"{ut\"{unc\"{uler H and Ol\u{gar E 2004 J. Kor. Phys. Soc. 45 837 T\"{ut\"{unc\"{uler H, Ko\c{c R and Ol\u{gar E 2004 J. Phys. A: Math. Gen. 37 11431 [32] Ushveridze A G 1994 Quasi-Exactly Solvable Models inQuantum Mechanics (London: Taylor and Francis) [33] Tkachuk V M 1998 Phys. Lett. A 245 177 Kuliy T V and Tkachuk VM 1999 J. Phys. A: Math. Gen. 32 2157 [34] Li B et al. 2008 Phys. Rev. A 78 023608 Zhang X F et al 2008 Phys. Rev. A 77 023613 Xie Z\ W et al 2005 Phys. Rev. A 71 025601 [35] de Dutra A S and Chen G 2006 Phys. Lett. A 349 297