The effect of La doping on the electronic structure and optical properties of SrTiO3 and Sr2TiO4 is investigated by the first-principles calculation of plane wave ultrasoft pseudopotential based on the density function theory (DFT). The calculated results reveal that the electron doping in the case of Sr0.875La0.125TiO3 and Sr1.875La0.125TiO4 can be described within the rigid band model. The La3+ ions fully acts as electron donors in Sr0.875La0.125TiO3 and Sr1.875La0.125TiO4 systems and the Fermi level shifts further into the conduction bands (CBs) for Sr1.875La0.125TiO4 compared to Sr0.875La0.125TiO3. The two systems exhibit n-type degenerate semiconductor features. At the same time, the density of states (DOS) of the two systems shift towards low energies and the optical band gaps are broadened. The Sr1.875La0.125TiO4 is highly transparent with the transmittance about 90% in the visible range, which is larger than that of Sr0.875La0.125TiO3(85%). The wide band gap, small transition probability and weak absorption due to the low partial density of states (PDOS) of impurity in the Fermi level result in the optical transparency of the films...
The effect of La doping on the electronic structure and optical properties of SrTiO3 and Sr2TiO4 is investigated by the first-principles calculation of plane wave ultrasoft pseudopotential based on the density function theory (DFT). The calculated results reveal that the electron doping in the case of Sr0.875La0.125TiO3 and Sr1.875La0.125TiO4 can be described within the rigid band model. The La3+ ions fully acts as electron donors in Sr0.875La0.125TiO3 and Sr1.875La0.125TiO4 systems and the Fermi level shifts further into the conduction bands (CBs) for Sr1.875La0.125TiO4 compared to Sr0.875La0.125TiO3. The two systems exhibit n-type degenerate semiconductor features. At the same time, the density of states (DOS) of the two systems shift towards low energies and the optical band gaps are broadened. The Sr1.875La0.125TiO4 is highly transparent with the transmittance about 90% in the visible range, which is larger than that of Sr0.875La0.125TiO3(85%). The wide band gap, small transition probability and weak absorption due to the low partial density of states (PDOS) of impurity in the Fermi level result in the optical transparency of the films...
YUN Jiang-Ni;ZHANG Zhi-Yong;YAN Jun-Feng;ZHAO Wu. Electronic Structure and Optical Properties of La-Doped SrTiO3 and Sr2TiO4 by Density Function Theory[J]. 中国物理快报, 2009, 26(1): 17107-017107.
YUN Jiang-Ni, ZHANG Zhi-Yong, YAN Jun-Feng, ZHAO Wu. Electronic Structure and Optical Properties of La-Doped SrTiO3 and Sr2TiO4 by Density Function Theory. Chin. Phys. Lett., 2009, 26(1): 17107-017107.
[1] Kim H and Pique A 2004 Appl. Phys. Lett. 84218 [2] Furubayashi Y et al 2005 Appl. Phys. Lett. 86 252101 [3] Furubayashi Y et al 2007 J. Appl. Phys. 101093705 [4] Nomura K et al 2003 Science 300 1269 [5] Kwon Y et al 2004 Appl. Phys. Lett. 84 2685 [6] Siddiqui J et al 2006 Appl. Phys. Lett. 88212903 [7] Wang H H et al 2001 Appl. Phys. Lett. 781676 [8] Cho J H and Cho H J 2001 Appl. Phys. Lett. 79 1426 [9] Guo H Z et al 2003 J. Appl. Phys. 94 4558 [10] Wang R P and Tao C J 2002 J. Cryst. Growth 245 63 [11] Tetsuka H et al 2006 J. Vac. Sci. Technol. A 24 L4 [12] Wang H F et al 2007 J. Appl. Phys. 101106105 [13] Liu Q Z et al 2008 J. Appl. Phys. 103093709 [14] Segall M D et al 2002 J. Phys. Condens. Matter 14 2717 [15] Pfrommer B G et al 1997 J. Comput. Phys. 131 233 [16] Van Benthem K et al 2001 J. Appl. Phys. 90 6156 [17] Matsuno J et al 2005 Phys. Rev. Lett. 95 176404 [18] Zhang F C et al 2008 Chin. Phys. Lett. 253735 [19] Wei S H and Zungern 1988 Phys. Rev. B 378958 [20] Wang Y F et al 2008 Ceram. Int. 34 849 [21] Burstein E 1954 Phys. Rev. 93 632 [22] Mahan G D 1980 J. Appl. Phys. 51 2634 [23] Saha S and Sinha T P 2000 Phys. Rev. B 628828