We investigate the molecular beam epitaxy growth of GaSb films on GaAs substrates using AlSb buffer layers. Optimization of AlSb growth parameter is aimed at obtaining high GaSb crystal quality and smooth GaSb surface. The optimized growth temperature and thickness of AlSb layers are found to be 450°C and 2.1nm, respectively. A rms surface roughness of 0.67nm over 10×10μm2 is achieved as a 0.5μm GaSb film is grown under optimized conditions.
We investigate the molecular beam epitaxy growth of GaSb films on GaAs substrates using AlSb buffer layers. Optimization of AlSb growth parameter is aimed at obtaining high GaSb crystal quality and smooth GaSb surface. The optimized growth temperature and thickness of AlSb layers are found to be 450°C and 2.1nm, respectively. A rms surface roughness of 0.67nm over 10×10μm2 is achieved as a 0.5μm GaSb film is grown under optimized conditions.
[1] Hill C J and Yang R Q 2004 Appl. Phys. Lett. 85 3014 [2] Aifer E H, Jackson E M, Boishin G, Whitman L J, VurgaftmanI, Meyer J R, Culbertson J C, and Bennett B R 2003 Appl. Phys.Lett. 82 4411 [3] Brown G J 2005 Proc. SPIE 5783 65 [4] Mohseni H, Tahraoui A, Wojkowski J, and Razeghi M, Brown GJ, Mitchel W C and Park Y S 2000 Appl. Phys. Lett. 771572 [5] Mohseni H, Tahraoui A, Wojkowski J S, Razeghi M, Mitchel Wand Saxler A 2000 Proc. SPIE 3948 145 [6] Brar B and Leonard D 1995 Appl. Phys. Lett. 66463 [7] Brown S J, Grimshaw M P, Ritchie D A, and Jones G A C 1996 Appl. Phys. Lett. 69 1468 [8] Chang J C P, Chen J, Fernandez J M, Wieder H H, andKavanagh K L 1992 Appl. Phys. Lett. 60 1129 [9] Jayavel P, Nakamura S, Koyama T, and Hayakawa Y 2006 Phys. Status Solidi C 3 2685 [10] Xin Y C, Vaughn L G, Dawson L R, Stintz A, Lin Y, LesterL F and Huffaker D L 2003 J. Appl. Phys. 94 2133 [11] Qian W, Skowronski M and Kaspi R 1997 J.Electrochem. Soc. 144 1430 [12] Chow D H, Miles R H, S\"{oderstr\"{om J R and McGill TC 1990 Appl. Phys. Lett. 56 1418 [13] Zhang X B, Ryou J H, Dupuis R D, Petschke A, Mou S,Chuang S L, Xu C and Hsieh K C 2006 Appl. Phys. Lett. 88072104 [14] Lee W, Kim S, Choi S, Lee H, Lee S, Park S, Yao T, SongJ, Ko H and Chang J 2007 J. Crystal Growth 305 40 [15] Kanisawa K, Yamaguchi H and Hirayama Y 2000 Appl.Phys. Lett. 76 589 [16] Nishimura T, Kadoiwa K, Hayafuji N, Miyashita M, MitsuiK, Kumabe H and Murotani T 1991 J. Crystal Growth 107468 [17] Takano Y, Sasaki T, Nagaki Y, Kuwahara K, Fuke S and ImaiT 1996 J. Crystal Growth 169 621 [18] Akahane K, Yamamoto N, Gozu S and Ohtani N 2004 J.Crystal Growth 264 21 [19] Kim Y H, Lee J Y, Noh Y G, Kim M D, Cho S M, Kwon Y J andOh J E 2006 Appl. Phys. Lett. 88 241907 [20] Kim H S, Noh Y K, Kim M D, Kwon Y J, Oh J E, Kim Y H, LeeJ Y, Kim S G and Chung K S 2007 J. Crystal Growth 301-302 230 [21] Li L K, Hsu Y and Wang W I 1993 J. Vac. Sci.Technol. B 11 872 [22] Ivanov S V, Altukhov P D, Argunova T S, Bakun A A, BudzaA A, Chaldyshev V V, Kovalenko Yu A, Kop'ev P S, Kutt R N, Meltser BYa, Ruvimov S S, Shaposhnikov S V, Sorokin L M and Ustinov V M 1993 Semicond. Sci. Technol. 8 347 [23] Watkins S P, Ar\`{es R, Soerensen G, Zhong W, Tran C A,Bryce J E and Bolognesi C R 1997 J. Crystal Growth 170788