摘要We use non-maximally entangled states (NMESs) to simulate an entangling unitary operator (EUO) with a certain probability. Given entanglement resources, the probability of the success we achieve is a decreasing function of the parameters of the EUO. Given an EUO, for certain entanglement resources the result is optimal, i.e., the probability obtains a maximal value, and for optimal result higher parameters of the EUO match more amount of entanglement resources. The probability of the success we achieve is higher than the known results under some condition.
Abstract:We use non-maximally entangled states (NMESs) to simulate an entangling unitary operator (EUO) with a certain probability. Given entanglement resources, the probability of the success we achieve is a decreasing function of the parameters of the EUO. Given an EUO, for certain entanglement resources the result is optimal, i.e., the probability obtains a maximal value, and for optimal result higher parameters of the EUO match more amount of entanglement resources. The probability of the success we achieve is higher than the known results under some condition.
LI Chun-Xian;WANG Cheng-Zhi;NIE Liu-Ying; LI Jiang-Fan. Simulating Entangling Unitary Operator Using Non-maximally Entangled States[J]. 中国物理快报, 2009, 26(2): 20303-020303.
LI Chun-Xian, WANG Cheng-Zhi, NIE Liu-Ying, LI Jiang-Fan. Simulating Entangling Unitary Operator Using Non-maximally Entangled States. Chin. Phys. Lett., 2009, 26(2): 20303-020303.
[1] Eisert J, Jacobs K, Papadopoulos P and Plenio M B 2000 Phys. Rev. A 62 052317 [2] Huelga S F, Vaccaro J A, Chefles A and Plenio M B 2001 Phys. Rev. A 63 042303 [3] Chefles A, Gilson C R and Barnett S M 2001 Phys.Rev. A 63 032314 [4] Collins D, Linden N and Popescu S 2001 Phys. Rev. A 64 032302 [5] Khaneja N, Brockett R and Glaser S J 2001 Phys.Rev. A 63 032308 [6] Kraus B and Cirac J I 2001 Phys. Rev. A 63062309 [7] Nielsen M A, Dawson C M et al 2003 Phys. Rev. A 67 052301 [8] Bremner M J, Dawson C M, Dodd J L et al 2002 Phys.Rev. Lett. 89 247902 [9] Vidal G, Hammerer K and Cirac J I 2002 Phys. Rev.Lett. 88 237902 [10] Hammerer K, Vidal G and Cirac J I 2002 Phys. Rev.A 66 062321 [11] D\"{ur W, Vidal G and Cirac J I 2002 Phys. Rev.Lett. 89 057901 [12] Vidal G 1999 Phys. Rev. Lett. 83 1046 [13] Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022 [14] Wootters W K 1998 Phys. Rev. Lett. 80 2245 [15] Groisman B and Reznik B 2005 Phys. Rev. A 71 032322 [16] Chen L and Chen Y X 2005 Phys. Rev. A 71054302 [17] Ye M Y, Zhang Y S and Guo G C 2007 Phys. Rev. A 73 032337