1Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 4210082Faculty of Material and Photoelectronic Physics, Xiangtan University, Xiangtan 411005
Realization of Three-Qubit Controlled-Phase Gate Operation with Atoms in Cavity QED System
1Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 4210082Faculty of Material and Photoelectronic Physics, Xiangtan University, Xiangtan 411005
摘要We propose a scheme for realization of three-qubit controlled-phase gate via passing two three-level atoms through a high-Q optical cavity in a cavity QED system. In the presented protocol, the two stable ground states of the atoms act as the two controlling qubits and the zero- and one-photon Fock states of the cavity-field form the target qubit, and no auxiliary state or any measurement is required. The numerical simulation shows that the gate fidelities remain at a high level under the influence of the atomic spontaneous emission, the decay of the cavity mode and deviation of the coupling strength. The experimental feasibility of our proposal is also discussed.
Abstract:We propose a scheme for realization of three-qubit controlled-phase gate via passing two three-level atoms through a high-Q optical cavity in a cavity QED system. In the presented protocol, the two stable ground states of the atoms act as the two controlling qubits and the zero- and one-photon Fock states of the cavity-field form the target qubit, and no auxiliary state or any measurement is required. The numerical simulation shows that the gate fidelities remain at a high level under the influence of the atomic spontaneous emission, the decay of the cavity mode and deviation of the coupling strength. The experimental feasibility of our proposal is also discussed.
[1] Raimond J M et al 2001 Rev. Mod. Phys 73 565 [2] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 852392 [3] Lin X M et al 2006 Phys. Rev. A 74 052339 [4] Osnaghi S et al 2001 Phys. Rev. Lett. 87037902 [5] Brune M et al 1996 Phys. Rev. Lett. 77 4887 [6] Rauschenbeutel A et al 2000 Science 288 2024 [7] Bertet P et al 2002 Phys. Rev. Lett. 88 143601 [8] Grover L K 1997 Phys. Rev. Lett. 79 325 [9] Jiang C L et al 2008 Chin. Phys. 17 190 Tang S Q et al 2009 Chin. Phys. 18 56 [10] Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091 [11] Barenco A et al 1995 Phys. Rev. Lett. 74 4083 [12] Loss D and Di Vincenzo D P 1998 Phys. Rev. A 57 120 [13] Song K H et al 2007 Phys. Rev. A 75 032347 [14] Barenco A et al 1995 Phys. Rev. A 52 3457 [15] Sleator T and Weinfurter H 1995 Phys. Rev. Lett. 74 4087 [16] Grover L K 1998 Phys. Rev. Lett. 80 4329 [17] Steane A M 1996 Phys. Rev. Lett. 77 793 [18] Chen C Y et al 2006 Phys. Rev. A 73 064304 [19]Shao X Q et al 2008 Chin. Phys. Lett. 25 27 Fan Q B 2008 Chin. Phys. Lett. 25 379 Xiao Y F et al 2007 Phys. Rev. A 75 054303 [20] Chang J T and Zubairy M S 2008 Phys. Rev. A 77 012329 [21] Cai J W et al 2006 J. Mod. Opt. 53 2308 Zubairy M S et al 2003 Phys. Rev. A 68 033820 [22] Garc\'{\ia-Maraver R et al 2004 Phys. Rev. A 70 062324 [23] Shu J et al 2007 Phys. Rev. A 75 044302 Cai J W et al 2006 Chin. Phys. 15 2518 [24]Lin G W et al 2008 Phys. Rev. A 77 032308 [25]Lin G W et al 2008 Phys. Rev. A 77 064301 [26] Maunz P et al 2005 Phys. Rev. Lett. 94 033002 [27] Wang X W et al 2007 Chin. Phys. Lett. 24 11 [28] Wang X W et al 2008 Opt. Commun. 281 5282