A Scheme for Atomic Entangled States and Quantum Gate Operations in Cavity QED
LI Peng-Bo1, GU Ying1, GONG Qi-Huang1, GUO Guang-Can1,2
1State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 1008712Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026
A Scheme for Atomic Entangled States and Quantum Gate Operations in Cavity QED
LI Peng-Bo1, GU Ying1, GONG Qi-Huang1, GUO Guang-Can1,2
1State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 1008712Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026
摘要We propose a scheme for controllably entangling the ground states of five-state W-type atoms confined in a cavity and realizing swap gate and phase gate operations. In this scheme the cavity is only virtually excited and the atomic excited states are almost not occupied, so the produced entangled states and quantum logic operations are very robust against the cavity decay and atomic spontaneous emission.
Abstract:We propose a scheme for controllably entangling the ground states of five-state W-type atoms confined in a cavity and realizing swap gate and phase gate operations. In this scheme the cavity is only virtually excited and the atomic excited states are almost not occupied, so the produced entangled states and quantum logic operations are very robust against the cavity decay and atomic spontaneous emission.
LI Peng-Bo;GU Ying;GONG Qi-Huang;GUO Guang-Can;. A Scheme for Atomic Entangled States and Quantum Gate Operations in Cavity QED[J]. 中国物理快报, 2009, 26(3): 30301-030301.
LI Peng-Bo, GU Ying, GONG Qi-Huang, GUO Guang-Can,. A Scheme for Atomic Entangled States and Quantum Gate Operations in Cavity QED. Chin. Phys. Lett., 2009, 26(3): 30301-030301.
[1] Nielsen M A and Chuang I L 2001 Quantum Computationand Quantum Information (Cambridge: Cambridge University Press) [2] Dell'Anno F, Siena S D and Illuminati F 2006 Phys.Rep. 428 53 [3] Mabuchi H and Doherty A C 2002 Science 2981372 [4] Raimond J M, Brune M and Haroche S 2001 Rev. Mod.Phys. 73 565 [5] Kimble H J 1998 Phys. Scr. T76 127 [6] Turchette Q A, Wood C S, King B E, Myatt C J, Leibfried D,Itano W M, Monroe C and Wineland D J 1998 Phys. Rev. Lett. 81 3631 [7] Hagley E, Maitre X, Nogues G, Wunderlich C, Brune M,Raimond J M, and Haroche S 1997 Phys. Rev. Lett. 79 1 [8] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 852392 [9] Osnaghi S, Bertet P, Auffeves A, Maioli P, Brune M,Raimond J M, and Haroche S 2001 Phys. Rev. Lett. 87037902 [10] Greenberger D M, Horne M A, Shimony A and Zeilinger A1990 Am. J. Phys. 58 1131 [11] Ye L and Guo G C 2003 J. Opt. Soc. Am. B 2097 [12] Ye L and Guo G C 2004 Phys. Lett. A 327 284 [13] D\"ur W, Vidal G and Cirac J I 1990 Phys. Rev. A 62 062314 [14] Briegel H J and Raussendorf R 2001 Phys. Rev.Lett. 86 910 [15] Wu H Z, Yang Z B and Zheng S B 2007 Chin. Phys.Lett. 24 3055 Zhou Y L, Yang L J and Dai H Y 2007 Chin. Phys. Lett. 24 3304 [16] Rauschenbeutel A, Nogues G, Osnaghi S, Bertet P, Brune M,Raimond J M, and Haroche S 2000 Science 288 3024 [17] Turchette Q A, Hood C J, Lange W, Mabuchi H and Kimble HJ 1995 Phys. Rev. Lett. 75 4710 [18] James D F V 2000 Fortschr. Phys. 48 823 [19] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777 [20] Wang X G 2001 Phys. Rev. A 64 012313 [21] Song K H, Zhou Z W and Guo G C 2005 Phys. Rev. A 71 052310 [22] Hartmann M J, Brandao F G S L, and Plenio M B 2007 Phys. Rev. Lett. 99 160501 [23] Hennessy K, Badolato A, Winger M, Gerace D, Atatue M,Gulde S, Falt S, Hu E L and Imamoglu A 2007 Nature (London) 445 896 [24] Armani D K, Kippenberg T J, Spillane S M, and Vahala K J2004 Nature (London) 421 925