摘要We study pulse propagation in a normal-dispersion optical fibre amplifier with an arbitrary longitudinal gain profile by self-similarity techniques. We show the functional form of the development of low-amplitude wings on the parabolic pulse, which are associated with the evolution of an arbitrary input pulse to the asymptotic parabolic pulse solution. It is found that for the increasing gain the amplifier output corresponding to the input Gaussian pulse converges to the asymptotic parabolic pulse solution more quickly than the output obtained with the input hyperbolic secant pulse, whereas for the decreasing gain the input pulse profiles have nearly no effect on the speed of convergence to the parabolic pulse solution. These theoretical results are confirmed by numerical simulations.
Abstract:We study pulse propagation in a normal-dispersion optical fibre amplifier with an arbitrary longitudinal gain profile by self-similarity techniques. We show the functional form of the development of low-amplitude wings on the parabolic pulse, which are associated with the evolution of an arbitrary input pulse to the asymptotic parabolic pulse solution. It is found that for the increasing gain the amplifier output corresponding to the input Gaussian pulse converges to the asymptotic parabolic pulse solution more quickly than the output obtained with the input hyperbolic secant pulse, whereas for the decreasing gain the input pulse profiles have nearly no effect on the speed of convergence to the parabolic pulse solution. These theoretical results are confirmed by numerical simulations.
(Nonlinearity, bifurcation, and symmetry breaking)
引用本文:
ZHAO Wei;LU Ke-Qing;ZHANG Yi-Qi;YANG Yan-Long;WANG Yi-Shan;LIUXue-Ming. Intermediate Self-similar Solutions of the Nonlinear Schrödinger Equation with an Arbitrary Longitudinal Gain Profile[J]. 中国物理快报, 2009, 26(4): 44213-044213.
ZHAO Wei, LU Ke-Qing, ZHANG Yi-Qi, YANG Yan-Long, WANG Yi-Shan, LIUXue-Ming. Intermediate Self-similar Solutions of the Nonlinear Schrödinger Equation with an Arbitrary Longitudinal Gain Profile. Chin. Phys. Lett., 2009, 26(4): 44213-044213.
[1] Yakhot V 2001 Phys. Rev. Lett. 87 234501 [2] Korabel N and Klages R 2002 Phys. Rev. Lett. 89 214102 [3] Meer D V, Weele K V and Lohse D 2002 Phys. Rev.Lett. 88 174302 [4] Barenblatt G I 1996 Self-Similarity S andAsymptotics I (Cambridge: Cambridge University Press) [5] Afanas'ev A A, Kruglov V I, Samson B A, Jakyte R andVolkov V M 1991 J. Mod. Opt. 38 1189 [6] Menyuk C R, Levi D and Winternitz P 1992 Phys. Rev.Lett. 69 3048 [7] Monro T M, Millar P D, Poladian L and Sterke C M 1998 Opt. Lett. 23 268 [8] Soljacic M, Segev M and Menyuk C R 2000 Phys. Rev. E 61 R1048 [9] Anderson D, Desaix M, Karlsson M, Lisak M andQuiroga-Teixeiro M L 1993 J. Opt. Soc. Am. B 10 1185 [10] Limpert J, Schreiber T, Clausnitzer T, Z\"{ollner K,Fuchs H J, Kley E B, Zellmer H and T\"{unnermann A 2002 Opt.Express 10 628 [11] Finot C, Millot G, Billet C and Dudley J M 2003 Opt.Express 11 1547 [12] Quiroga-Teixeiro M L, Anderson D, Andrekson P A, BerntsonA and Lisak M 1996 J. Opt. Soc. Am. B 13 687 [13] Moores J D 1996 Opt. Lett. 21 555 [14] Fermann M E, Kruglov V I, Thomsen B C, Dudley J M andHarvey J D 2000 Phys. Rev. Lett. 84 6010 [15] Kruglov V I, Peacock A C, Dudley J M and Harvey J D 2000 Opt. Lett. 25 1753 [16] Kruglov V I, Peacock A C, Harvey J D and Dudley J M 2002 J. Opt. Soc. Am. B 19 461 [17] Limpert J, Schreiber T, Clausnitzer T, Z\"{ollner K,Fuchs H J, Kley E B, Zellmer H and T\"{unnermann A 2002 Opt.Express 10 628 [18] Peacock A C, Kruhlak R J, Harvey J D and Dudley J M 2002 Opt. Commun. 206 171 [19] Malinowski A, Piper A, Price J H V, Furusawa K, Jeong Y,Nilsson J and Richardson D J 2004 Opt. Lett. 29 2073 [20] Finot C, Millot G, Pitois S, Billet C and Dudley J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 1211 [21] Fermann M E, Kruglov V I, Thomsen B C, Dudley J M andHarvey J D 2000 Phys. Rev. Lett. 84 6010 [22] Ilday F \"{O, Buckley R B, Clark W G and Wise F W 2004 Phys. Rev. Lett. 92 213902