New Periodic Solution to Jacobi Elliptic Functions of a (2+1)-Dimensional BKP Equation and a Generalized Klein-Gordon Equation
Ma Hong-Cai1, Deng Ai-Ping1, Qin Zhen-Yun2
1Department of Applied Mathematics, College of Science, Donghua University, Shanghai 2016202Department of Mathematics, Fudan University, Shanghai 200433
New Periodic Solution to Jacobi Elliptic Functions of a (2+1)-Dimensional BKP Equation and a Generalized Klein-Gordon Equation
Ma Hong-Cai1, Deng Ai-Ping1, Qin Zhen-Yun2
1Department of Applied Mathematics, College of Science, Donghua University, Shanghai 2016202Department of Mathematics, Fudan University, Shanghai 200433
摘要With the help of the homogeneous balance method, the Jacobi elliptic expansion method and the auxiliary equation method, the first elliptic function equation is used to obtain the Jacobi doubly periodic wave solutions of the (2+1)-dimensional B-type Kadomtsev-Petviashvili (BKP) equation and the generalized Klein-Gordon equation. The method is also valid for other (1+1)-dimensional and higher dimensional systems.
Abstract:With the help of the homogeneous balance method, the Jacobi elliptic expansion method and the auxiliary equation method, the first elliptic function equation is used to obtain the Jacobi doubly periodic wave solutions of the (2+1)-dimensional B-type Kadomtsev-Petviashvili (BKP) equation and the generalized Klein-Gordon equation. The method is also valid for other (1+1)-dimensional and higher dimensional systems.
Ma Hong-Cai;Deng Ai-Ping;Qin Zhen-Yun. New Periodic Solution to Jacobi Elliptic Functions of a (2+1)-Dimensional BKP Equation and a Generalized Klein-Gordon Equation[J]. 中国物理快报, 2009, 26(4): 40201-040201.
Ma Hong-Cai, Deng Ai-Ping, Qin Zhen-Yun.
New Periodic Solution to Jacobi Elliptic Functions of a (2+1)-Dimensional BKP Equation and a Generalized Klein-Gordon Equation. Chin. Phys. Lett., 2009, 26(4): 40201-040201.
[1] Ablowitz M J and Clarkson P A 1991 Solitons,Nonlinear Evolution Equations and Inverse Scattering (Cambridge:Cambridge University) [2] Wadati M, Sanuki H and Konno K 1975 Prog. Theor.Phys. 53 419 [3] Gardner C S, Green J M, Kruskal M D and Miura R M 1967 Phys. Rev. Lett. 19 1095 [4] Hirota R 1971 Phys. Rev. Lett. 27 1192 [5] Coely A et al 2001 Backlund and DarbouxTransformations (Providence, RI: American Mathematical Society) [6] Malfeit W 1992 Am. J. Phys. 60 650 [7] Yan C T 1996 Phys. Lett. A 224 77 [8] Wang M L 1996 Phys. Lett. A 213 279 [9] Fan E G 2000 Phys. Lett. A277 212 [10] Fan E G 2001 Phys. Lett. A 282 18 [11] Zhang J F, Ren D F, Wang M L et al 2003 Chin. Phys. 12 825 Fu Z T and Liu S K 2003 Commun. Theor. Phys. 39531 [12] Date E, Jimbo M, Kashiwara M and Miwa T 1982 Physica D 4 343 He J S, Cheng Y and R\"{omerb R A 2006 J. High EnergyPhys. 03 103 He J S and Li X D arxiv:0811.4016 He J S, Wu Z W and Cheng Y 2007 J. Math. Phys. 48113519 Hu X B et al 2006 Inverse Problems 22 1903 [13] Jimbo M and Miwa T 1983 Publ. RIMS. Kyoto.University 19 943 [14] Bai C 2001 Phys. Lett. A 288 191 Sirendaoreji 2006 Phys. Lett. A 356 124 Nickle HH and Beers Brian L 1972 J. Phys. A: Gen. Phys. 5 1658 Cruz Mand Arredondo J H 2008 J. Math. Phys. 49 113512 [15] Dodd R K 1982 Solitons Nonlinear Wave Equations(London: Academic) [16] Liu S K, Fu Z T and Liu S D 2006 Phys. Lett. A 351 59 [17] Jeffrey A and Mohamad M N 1991 Wave Motion 14369