摘要It has been recently reported that scale-free topology favors the detection of a weak signal because of the higher amplification at the hub node than that at other nodes [Phys. Ref. E 78(2008)046111]. We investigate the corresponding synchronization behaviors and find that the favorite detection depends not only on the coupling and noise strengths but also on the frequency of the external signal. We reveal theoretically and numerically that the amplification effect of the hub node will decrease monotonously with the external frequency, which is useful to understand the high sensitivity of animal visual and auditory systems to weak external signals.
Abstract:It has been recently reported that scale-free topology favors the detection of a weak signal because of the higher amplification at the hub node than that at other nodes [Phys. Ref. E 78(2008)046111]. We investigate the corresponding synchronization behaviors and find that the favorite detection depends not only on the coupling and noise strengths but also on the frequency of the external signal. We reveal theoretically and numerically that the amplification effect of the hub node will decrease monotonously with the external frequency, which is useful to understand the high sensitivity of animal visual and auditory systems to weak external signals.
LU Fa-Ming;LIU Zong-Hua. Frequency Sensitivity of Signal Detection in Scale-Free Networks[J]. 中国物理快报, 2009, 26(4): 40503-040503.
LU Fa-Ming, LIU Zong-Hua. Frequency Sensitivity of Signal Detection in Scale-Free Networks. Chin. Phys. Lett., 2009, 26(4): 40503-040503.
[1] Benzi R, Sutera A and Vulpiani A 1981 J. Phys. A 14 L453 [2] McNamara B and Wiesenfeld K 1989 Phys. Rev. A 39 4854 [3] Longtin A 1993 J. Stat. Phys. 70 309 [4] Gammaitoni L, Hanggi P, Jung P and Marchesoni F 1998 Rev. Mod. Phys. 70 223 [5] Russell D F, Wilkens L A and Moss F 1999 Nature 402 291 [6] Lindner B, Garcia-Ojalvo J, Neiman A and Schimansky-GeierL 2004 Phys. Rep. 392 321 [7] Lindner J F, Meadows B K, Ditto W L, Inchiosa M E andBulsara A R 1995 Phys. Rev. Lett. 75 3 [8] Liu Z, Lai Y C and Nachman A 2002 Phys. Lett. A 297 75 Liu Z, Lai Y C and Nachman A 2004 Int. J. Bif. Chaos 14 1655 [9] Pikovsky A S, Zaikin A and de la Casa M A 2002 Phys.Rev. Lett. 88 050601 [10] Zaikin A A, Kurths J and Schimansky-Geier L 2000 Phys. Rev. Lett. 85 227 [11] Vilar J M G and Rubi J M 1996 Phys. Rev. Lett. 77 2863 [12] Hu G, Ditzinger T, Ning C Z and Haken H 1993 Phys.Rev. Lett. 71 807 [13] Pikovsky A S and Kurths J 1997 Phys. Rev. Lett. 78 775 [14] Liu Z and Lai Y C 2001 Phys. Rev. Lett. 864737 Liu Z and Lai Y C 2001 Phys. Rev. E 64 066202 Zhu L, Lai Y C, Liu Z and Raghu A 2002 Phys. Rev. E 66015204 [15] Liu Z and Munakata T 2008 Phys. Rev. E 78046111 [16] Acebron J A, Lozano S and Arenas A 2007 Phys. Rev.Lett. 99 128701 [17] Camalet S, Duke T, Julicher F and Prost J 2000 Proc.Natl. Acad. Sci. U.S.A. 97 3183 [18] Vilfan A and Duke T 2003 Biophys. J. 85 191 [19] Stoop R, Kern A, Gopfert M C, Smirnov D A, Dikanev T Vand Bezrucko B P 2006 Eur. Biophys. J. 35 511 [20] Moreau L and Sontag E 2003 Phys. Rev. E 68020901 [21] Stocks N G and Mannella R 2001 Phys. Rev. E 64 030902 [22] Seo B, Krishnan R and Munakata T 2007 Phys. Rev. E 75 056106 Munakata T, Hada T and Ueda M 2007 Physica A 375492 [23] Barabasi A L and Albert R 1999 Science 286509 [24] Liu Z, Lai Y C, Ye N and Dasgupta P 2002 Phys.Lett. A 303 337 Liu Z, Lai Y C, Ye N and Dasgupta P 2002 Phys. Rev. E 66 036112