Magneto-optical and Microwave Properties of LuBiIG Thin Films Prepared by Liquid Phase Epitaxy Method from Lead-Free Flux
YANG Qing-Hui1, ZHNAG Huai-Wu1, WEN Qi-Ye1, LIU Ying-Li1, Ihor M. Syvorotka2, Ihor I. Syvorotka2
1State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chendu 6100542R&D Institute of Materials, Scientific Research Company `Carat', Division of Crystal Physics and Technology, Lviv, Ukraine
Magneto-optical and Microwave Properties of LuBiIG Thin Films Prepared by Liquid Phase Epitaxy Method from Lead-Free Flux
YANG Qing-Hui1, ZHNAG Huai-Wu1, WEN Qi-Ye1, LIU Ying-Li1, Ihor M. Syvorotka2, Ihor I. Syvorotka2
1State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chendu 6100542R&D Institute of Materials, Scientific Research Company `Carat', Division of Crystal Physics and Technology, Lviv, Ukraine
摘要Lu2.1Bi0.9Fe5O12 (LuBiIG) garnet films are prepared by liquid phase epitaxy (LPE) method on gadolinium gallium garnet (GGG) substrates from lead-free flux. Three-inch single crystal garnet films with (444) orientation and good surface are successfully fabricated. The lattice mismatch to the GGG(111) substrate is as small as 0.08%. The ferromagnetic resonance (FMR) linewidth of the film is 28710; H=2.8-5.1Oe, the Faraday rotation is 1.64deg/μm at 633nm at room temperature and the optical absorption coefficient of the film is 600cm-1 in visible range and about 100-170cm-1 when the wavelength is larger than 800nm. The epitaxy film possesses dominating in-plane magnetization with a saturation magnetization of about 1562G. These superior optical, magnetic-optical (MO) and microwave properties of our garnet films have potential applications in both MO and microwave devices.
Abstract:Lu2.1Bi0.9Fe5O12 (LuBiIG) garnet films are prepared by liquid phase epitaxy (LPE) method on gadolinium gallium garnet (GGG) substrates from lead-free flux. Three-inch single crystal garnet films with (444) orientation and good surface are successfully fabricated. The lattice mismatch to the GGG(111) substrate is as small as 0.08%. The ferromagnetic resonance (FMR) linewidth of the film is 28710; H=2.8-5.1Oe, the Faraday rotation is 1.64deg/μm at 633nm at room temperature and the optical absorption coefficient of the film is 600cm-1 in visible range and about 100-170cm-1 when the wavelength is larger than 800nm. The epitaxy film possesses dominating in-plane magnetization with a saturation magnetization of about 1562G. These superior optical, magnetic-optical (MO) and microwave properties of our garnet films have potential applications in both MO and microwave devices.
YANG Qing-Hui;ZHNAG Huai-Wu;WEN Qi-Ye;LIU Ying-Li;Ihor M. Syvorotka;Ihor I. Syvorotka. Magneto-optical and Microwave Properties of LuBiIG Thin Films Prepared by Liquid Phase Epitaxy Method from Lead-Free Flux[J]. 中国物理快报, 2009, 26(4): 47401-047401.
YANG Qing-Hui, ZHNAG Huai-Wu, WEN Qi-Ye, LIU Ying-Li, Ihor M. Syvorotka, Ihor I. Syvorotka. Magneto-optical and Microwave Properties of LuBiIG Thin Films Prepared by Liquid Phase Epitaxy Method from Lead-Free Flux. Chin. Phys. Lett., 2009, 26(4): 47401-047401.
[1] Huang M and Xu Z C 2005 Appl. Phys. A: Mater. Sci.Processing 81 193 [2] Huang M and Xu Z C 2004 Thin Solid Films 450324 [3] Pandit C R L J, Pieski S, Cobian R, Cherif M and Stadler BJ H 2001 Proc. SPIE 4284 29 [4] Ustinov A B, Tiberkevich V S, Srinivasan G et al 2006 J. Appl. Phys. 100 093905 [5] Fetisov Y K and Srinivasan G 2006 Appl. Phys. Lett. 88 143503 [6] Ustinov A B, Srinivasan G and Kalinikos B A 2007 Appl. Phys. Lett. 90 031913 [7] Adam J 1982 IEEE Trans. MTT S 79 [8] Chen C L 1989 IEEE Trans. MTT 37 239 [9] El-Sharawy E B 1995 IEEE Trans. MTT S 107 [10] Adam J 1985 IEEE Trans. Magn. 24 1794 [11] Dana S K, Ueda T and Tsutsumi M 2001 IEICE Trans.Electron. E 84-C 325 [12] Taketoshi H, Yoshinori O and Tsutomu A 1983 J.Lightwave Technol. LT-1 280 [13] Schloemann E and Ronald E 1986 IEEE Trans. MTT 34 1986 [14] Shinagawa K, Tobita E, Saito T et al 1998 J. Magn.Magn. Mater. 177--181 251 [15] Hiskes R, Felmlee T L and Burmeister R A 1974 J.Electron. Mater. 3 193 [16] Korenstein R and Castro C A 1979 J. Appl. Phys. 50 7830 [17] Glass H L and Elliott M T 1974 J. Crystal Growth 27 253 [18] Hansen P, Witter K and Tolksdorf W 1983 Phys. Rev.B 27 6608 [19] Hansen P, Rosenkranz H and Witter K 1982 Phys. Rev.B 25 4396 [20] Hansen P, Rosenkranz H and Witter K 1981 IEEE Trans.Magn. Mag. 17 3211 [21] Takeuchi T, Ito S, Mikami I et al 1973 J. Appl.Phys. 44 4789 [22] Hansen P, Klages C P, Schuldt J et al 1985 Phys.Rev. B 31 5858 [23] Hansen P, Witter K and Tolksdorf W 1984 J. Appl.Phys. 55 1052 [24] Gernber R, Atkinson R and Simsa Z 1997 J. Magn.Magn. Matter. 175 79 [25] Nistor I, Holthaus C, Mayergoyz I D et al 2006 J.Appl. Phys. 99 08M702