Lattice Boltzmann Simulations of Particle-Particle Interaction in Steady Poiseuille Flow
YI Hou-Hui1, FAN Li-Juan1, YANG Xiao-Feng2, LI Hua-Bing3
1Department of Physics and Electronics Science, Binzhou University, Shandong 2566002Department of Computer Engineering, Yiwu Industrial and Commercial College, Zhejiang 3220003Department of Information Material Science and Engineering, Guilin University of Electronic Technology, Guangxi 541004
Lattice Boltzmann Simulations of Particle-Particle Interaction in Steady Poiseuille Flow
YI Hou-Hui1, FAN Li-Juan1, YANG Xiao-Feng2, LI Hua-Bing3
1Department of Physics and Electronics Science, Binzhou University, Shandong 2566002Department of Computer Engineering, Yiwu Industrial and Commercial College, Zhejiang 3220003Department of Information Material Science and Engineering, Guilin University of Electronic Technology, Guangxi 541004
摘要The moving behaviour of two- and three-particles in a pressure-driven flow is studied by the lattice Boltzmann simulation in two dimensions. The time-dependent values, including particles' radial positions, translational velocities, angular velocities, and the x-directional distance between the particles are analysed extensively. The effect of flow Reynolds number on particle motion is also investigated numerically. The simulation results show that the leading particle equilibrium position is closer to the channel centre while the trailing particle equilibrium position is closer to the channel wall. If Reynolds number Re is less than 85.30, the larger flow Reynolds number results in the smaller x-directional equilibrium distance, otherwise the x-directional distance increases almost linearly with the increase of time and the particles separate finally. The simulation results are helpful to understand the particle-particle interaction in suspensions with swarms of particles.
Abstract:The moving behaviour of two- and three-particles in a pressure-driven flow is studied by the lattice Boltzmann simulation in two dimensions. The time-dependent values, including particles' radial positions, translational velocities, angular velocities, and the x-directional distance between the particles are analysed extensively. The effect of flow Reynolds number on particle motion is also investigated numerically. The simulation results show that the leading particle equilibrium position is closer to the channel centre while the trailing particle equilibrium position is closer to the channel wall. If Reynolds number Re is less than 85.30, the larger flow Reynolds number results in the smaller x-directional equilibrium distance, otherwise the x-directional distance increases almost linearly with the increase of time and the particles separate finally. The simulation results are helpful to understand the particle-particle interaction in suspensions with swarms of particles.
YI Hou-Hui;FAN Li-Juan;YANG Xiao-Feng;LI Hua-Bing. Lattice Boltzmann Simulations of Particle-Particle Interaction in Steady Poiseuille Flow[J]. 中国物理快报, 2009, 26(4): 48701-048701.
YI Hou-Hui, FAN Li-Juan, YANG Xiao-Feng, LI Hua-Bing. Lattice Boltzmann Simulations of Particle-Particle Interaction in Steady Poiseuille Flow. Chin. Phys. Lett., 2009, 26(4): 48701-048701.
[1] Fung Y C 1997 Biomechanics Circulation (Berlin:Springer) [2] Stround J S et al 2002 J. Biomech. Eng. 124 9 [3] Jayaweera K O L F et al 1964 J. Fluid Mech. 20 121 [4] Jayaweera K O L F et al 1965 J. Fluid Mech. 22 709 [5] Joseph D D, Liu Y J, Poletto M and Feng J 1994 J.Non-Newtonian Fluid Mechanics 54 45 [6] Feng J et al 1994 J. Fluid Mech. 261 95 [7] Goldman A J et al 1996 Chem. Engng. Sci. 211151 [8] McNamara G R et al 1988 Phys. Rev. Lett. 612332 [9] Qian Y H et al 1992 Europhys. Lett. 17 479 [10] Chen S et al 1991 Phys. Rev. Lett. 67 3776 [11] Chen H et al 1992 Phys. Rev. A 45 5339 [12] Chen H D et al 2003 Science 301 633 [13] Succi S 2001 The Lattice Boltzmann Equation forFluid Dynamics and Beyond (Oxford: Clarendon) [14] Ladd A J C 1994 J. Fluid Mech. 271 285 [15] Wan R Z et al 2003 Phys. Rev. E 68 011401 [16] Zhang C Y et al 2004 Chin. Phys. Lett. 211108 [17] Zhang C Y et al 2004 Acta Phys. Sin. 541982 (in Chinese) [18] Zhang C Y et al 2005 Chin. Phys. Lett. 22896 [19] Li H B et al 2004 Phys. Rev. E 70 026701 [20] Fang H P and Chen S Y 2004 Chin. Phys. 13 47 [21] Shan X and Chen H D 1993 Phys. Rev. E 47 1815 [22] Guo Z L and Zhao T S 2003 Phys. Rev. E 68035302 [23] Guo Z L and Zhao T S 2005 Phys. Rev. E 71026701 [24] Swift M R et al 1995 Phys. Rev. Lett. 75830 [25] Xu A G et al 2004 Physica A 331 10 [26] Xu Y S et al 2003 Chin. Phys. 12 621 [27] Xu Y S et al 2003 Mod. Phys. Lett. B 191351 [28] Xu Y S 2003 Acta Phys. Sin. 52 626 (inChinese) [29] Xu Y S et al 2004 Acta Phys. Sin. 53 773(in Chinese) [30] Wu B Z et al 2005 Chin. Phys. 14 2046 [31] Fang H P et al 1998 Phys. Rev. E 57 R25 [32] Fang H P et al 2002 Phys. Rev. E 65 051905 [33] Li H B et al 2004 Phys. Rev. E 69 031919 [34] Yi H H et al 2005 Chin. Phys. Lett. 22 3210 [35] Kang X Y et al 2005 Chin. Phys. Lett. 222873 [36] Lu X Y et al 2006 Chin. Phys. Lett. 23 738 [37] Li H B et al 2008 Europhys. Lett. 81 54002 [38] Yi H H et al 2008 Chin. Phys. Lett. 25 3496 [39] Migliorini C et al 2002 Biophys. J. 83 1834 [40] Sun C H et al 2003 Biophys. J. 85 208 [41] Inamuro T et al 2000 Int. J. Multiphase Flow 26 1981 [42] Allen M P and Tildesley D J 1987 Computer Simulationof Liquid (Oxford: Clarendon) [43] Segr\'e G and Silberberg A 1961 Nature 189209 [44] Segr\'e G and Silberberg A 1962 J. Fluid Mech. 14 115 [45] Segr\'e G et al 1965 Proc. 4th. Int. Gong. Rheol. 4 103 [46] Zhu M Y 2000 PhD Thesis (University ofPennsylvania)