摘要Transmission properties of photonic crystal (PC) waveguides with discretely modulated exit surfaces are investigated numerically using the finite-difference time-domain (FDTD) method. Unlike the case of periodically modulated surfaces, where the transmission beam tends to be a single and directional beam, when the exit surfaces are modulated only at several discrete points, the emission power tends to split into multiple and directional beams. We explain this phenomenon using a multiple point source interference model. Based on these results, we propose a 1-to-Nbeam splitter, and numerically realized high efficiency coupling between a PC sub-wavelength waveguide and three traditional dielectric waveguides with a total efficiency larger than 92%. This simple, easy fabrication, and controllable mechanism may find more potential applications in integrated optical circuits.
Abstract:Transmission properties of photonic crystal (PC) waveguides with discretely modulated exit surfaces are investigated numerically using the finite-difference time-domain (FDTD) method. Unlike the case of periodically modulated surfaces, where the transmission beam tends to be a single and directional beam, when the exit surfaces are modulated only at several discrete points, the emission power tends to split into multiple and directional beams. We explain this phenomenon using a multiple point source interference model. Based on these results, we propose a 1-to-Nbeam splitter, and numerically realized high efficiency coupling between a PC sub-wavelength waveguide and three traditional dielectric waveguides with a total efficiency larger than 92%. This simple, easy fabrication, and controllable mechanism may find more potential applications in integrated optical circuits.
[1] Lezec H J, Degiron A, Devaux E, Linke R A, Martin-MorenoL, Garcia-Vidal F J and Ebbesen T W 2002 Science 297820 [2] Wang B and Wang G P 2004 Appl. Phys. Lett. 853599 [3] Wang C T, Du C L, Lv Y G and Luo X G, 2006 Opt.Express 14 5671 [4] Hua Y L and Li Z Y 2009 J. Appl. Phys. 105013104 [5] Zhang Y L, Zhao D Y, Zhou C H and Jiang X Y 2008 Chin. Phys. Lett. 25 168 [6] Li Z, Zhang J S, Yan H F and Gong Q H 2007 Chin.Phys. Lett. 24 3233 [7] Moreno E, Garcia-Vidal F J and Martin-Moreno L 2004 Phys. Rev. B 69 121402(R) [8] Kramper P, Agio M, Soukoulis C M and Birner A, M\"ullerF, Wehrspohn R B, G\"osele U and Sandoghdar V 2004 Phys. Rev.Lett. 92 113903 [9] Morrison S K and Kivshar Y S 2005 Appl. Phys. Lett. 86 081110 [10] Frei W R, Tortorelli D A and Johnson H J 2005 Appl.Phys. Lett. 86 111114 [11] Bulu I, Caglayan H and Ozbay E 2005 Opt. Lett. 30 3078 [12] Chung K B, 2008 Opt. Commun. 281 5349 [13] Chen H B, Zeng Y, Chen X S, Wang J and Lu W 2008 Phys. Lett. A 372 5096 [14] Wang Q, Cui Y P, Yan C C, Zhang L L and Zhang J Y 2008 J. Phys. D: Appl. Phys. 41 105110 [15] Kurt H 2008 IEEE Photon. Tech. Lett. 20 1682 [16] Chen C C, Pertsch T, Iliew R, Lederer F, T\"unnermann A2006 Opt. Express 14 2423 [17] Guven K and Ozbay E 2007 Opt. Express 1514973 [18] Smigaj W 2007 Phys. Rev. B 75 205430 [19] Moussa R, Wang B, Tuttle G, Koschny Th and Soukoulis C M2007 Phys. Rev. B 75 235417 [20] Tang D H, Chen L X and Ding W Q 2006 Appl. Phys.Lett. 89 131120 [21] Liang W Y, Dong J W and Wang H Z 2008 Opt. Express 15 1234 [22] Park J M, Lee S G, Park H Y and Kim J E 2008 Opt.Express 16 20354 [23] Li Z, Aydin K and Ozbay E 2007 Appl. Phys. Lett. 91 121105 [24] Li Z, Aydin K and Ozbay E 2008 J. Phys. D: Appl.Phys. 41 155115 [25] Zhang Y, Zhang Y and Li B 2007 Opt. Express 15 9281 [26] Taflove A, Hagness S C 2000 ComputationalElectrodynamics: The Finite-Difference Time-Domain Method (Boston:Artech House)