摘要This work is concerned with lag projective synchronization of chaotic systems with increasing order. The systems under consideration have unknown parameters and different structures. Combining the adaptive control method and feedback control technique, we design a suitable controller and parameter update law to achieve lag synchronization of chaotic systems with increasing order. The result is rigorously proved by the Lyapunov stability theorem. Moreover, corresponding simulation results are given to verify the effectiveness of the proposed methods.
Abstract:This work is concerned with lag projective synchronization of chaotic systems with increasing order. The systems under consideration have unknown parameters and different structures. Combining the adaptive control method and feedback control technique, we design a suitable controller and parameter update law to achieve lag synchronization of chaotic systems with increasing order. The result is rigorously proved by the Lyapunov stability theorem. Moreover, corresponding simulation results are given to verify the effectiveness of the proposed methods.
[1] Perora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821 [2]Boccaletti S, Kurths J, Osipov G, Valladares D L and Zhou CS 2002 Phys. Rep. 1 366 [3]Nijmeijer H 2001 Phys. D 154 219 [4]Maritan A and Banavar J 1994 Phys. Rev. Lett. 72 1451 [5]Wang X F, Wang Z Q and Chen G 1999 Int. J. Bifur.Chaos 9 1169 [6]Kocarev L and Parlitz U 1996 Phys. Rev. Lett. 76 1816 [7]Yang X S and Chen G 2002 Chaos Solitons Fractals 13 1303 [8]Rosenblum M G, Pikovsky A S and Kurths J 1997 Phys.Rev. Lett. 78 4193 [9]Li D M, Wang Z D, Zhou J, Fang J A and Ni J J 2008 Chaos Solitons Fractals 4 1217 [10]Yu W W and Cao J D 2007 Physica. A 375 467 [11]Zhang Q J and Lu J A 2008 Phys. Lett. A 3721416 [12]Li C D, Liao X F and Wong K W 2004 Physica. D 194 187 [13]Senthilkumar D V and Lakshmanan M 2007 Chaos 17 [14]Mainieri R and Rehacek J 1999 Phys. Rev. Lett. 82 3042 [15]Tang Y and Fang J A 2008 Phys. Lett. A 3721816 [16]Tang Y, Qiu R H, Fang J A and Miao Q Y, 2008 Phys.Lett. A 372 4425 [17]Hu M F, Xu Z Y and Zhang R 2008 Nonlinear Sci. Numer.Simulat. 13 456 [18]Tang Y, Fang J A and Miao Q Y 2009 Neurocomputing 72 1694 [19]Femat R and Solis-Perales G 2002 Phys. Rev. E. 65 036226 [20]Chen J and Liu Z R 2003 Chin. Phys. Lett. 201441 [21]Bowong S and McClintock PVE 2006 Phys. Lett. A 358 134 [22]Ho M C, Hung Y C, Liu Z Y and Jiang I M 2006 Phys.Lett. A 348 251 [23]Genesio R and Tesi A 1992 Automatica 28 531 [24]Lorenz E N 1963 Atmos J. Sci. 20 130 [25]Bishop S R and Clifford M J 1996 J. Sound Vib. 189 142 [26]Chen G and Ueta T 1999 Int. J. Bifur. Chaos 91465