Description of 178Hfm2 in the Constrained Relativistic Mean Field Theory
ZHANG Wei1,2, PENG Jing3, ZHANG Shuang-Quan1
1School of Physics, and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 1008712School of Electrical Engineering and Automation, He'nan Polytechnic University, Jiaozuo 4540033Department of Physics, Beijing Normal University, Beijing 100875
Description of 178Hfm2 in the Constrained Relativistic Mean Field Theory
ZHANG Wei1,2, PENG Jing3, ZHANG Shuang-Quan1
1School of Physics, and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 1008712School of Electrical Engineering and Automation, He'nan Polytechnic University, Jiaozuo 4540033Department of Physics, Beijing Normal University, Beijing 100875
摘要Properties of the ground state of 178Hf and the isomeric state 178Hfm2 are studied within the adiabatic and diabatic constrained relativistic mean field (RMF) approaches. The RMF calculations reproduce well the binding energy and the deformation for the ground state of 178Hf. Using the ground state single-particle eigenvalues obtained in the present calculation, the lowest excitation configuration with Kπ=16+ is found to be ν(7/2-[514])-1(9/2+[624])1 π(7/2+[404])-1(9/2[514])1. Its excitation energy calculated by the RMF theory with time-odd fields taken into account is equal to 2.801MeV, i.e., close to the 178Hfm2 experimental excitation energy 2.446MeV. The self-consistent procedure accounting for the time-odd component of the meson fields is the most important aspect of the present calculation.
Abstract:Properties of the ground state of 178Hf and the isomeric state 178Hfm2 are studied within the adiabatic and diabatic constrained relativistic mean field (RMF) approaches. The RMF calculations reproduce well the binding energy and the deformation for the ground state of 178Hf. Using the ground state single-particle eigenvalues obtained in the present calculation, the lowest excitation configuration with Kπ=16+ is found to be ν(7/2-[514])-1(9/2+[624])1 π(7/2+[404])-1(9/2[514])1. Its excitation energy calculated by the RMF theory with time-odd fields taken into account is equal to 2.801MeV, i.e., close to the 178Hfm2 experimental excitation energy 2.446MeV. The self-consistent procedure accounting for the time-odd component of the meson fields is the most important aspect of the present calculation.
ZHANG Wei;PENG Jing;ZHANG Shuang-Quan. Description of 178Hfm2 in the Constrained Relativistic Mean Field Theory[J]. 中国物理快报, 2009, 26(5): 52101-052101.
ZHANG Wei, PENG Jing, ZHANG Shuang-Quan. Description of 178Hfm2 in the Constrained Relativistic Mean Field Theory. Chin. Phys. Lett., 2009, 26(5): 52101-052101.
[1] Serot B D and Walecka J D 1986 Adv. Nucl. Phys. 16 1 [2] Reinhard P -G 1989 Rep. Prog. Phys. 52 439 [3] Ring P 1996 Prog. Part. Nucl. Phys. 37 193 [4] Meng J and Ring P 1996 Phys. Rev. Lett. 773963 [5] Meng J and Ring P 1998 Phys. Rev. Lett. 80 460 [6] Glendenning N K 2000 Compact Stars (New York:Springer) [7] K\"{onig J and Ring P 1993 Phys. Rev. Lett. 71 3079 [8] Meng J et al 2002 Phys. Rev. C 65 8041302 [9] Ginocchio J N 1997 Phys. Rev. Lett. 78 436 [10] Meng J et al 1998 Phys. Rev. C 58 8628 [11] Meng J et al 1999 Phys. Rev. C 59 154 [12] Zhou S G et al 2003 Phys. Rev. Lett. 91 262501 [13] Madokoro H et al 2000 Phys.Rev. C 62 061301 [14] Ma Z Y et al 2002 Nucl. Phys. A 703 222 [15] Mares J and Jennings B K 1994 Phys. Rev. C 492472 [16] Geng L S et al 2005 Prog. Theor. Phys. 113785 [17] Vretenar D et al 2005 Phys. Rep. 409 101 [18] Meng J et al 2006 Prog. Part. Nucl. Phys 57470 [19] Hayes A B et al 2002 Phys. Rev. Lett. 89242501 [20] Cline D et al 2005 J. Mod. Opt. 52 2411 [21] Hayes A B et al 2007 Phys. Rev. C 75 034308 [22] Sun Y et al 2004 Phys. Lett. B 589 83 [23] Tu Y et al 2006 High Energy Phys. Nucl. Phys.Suppl. 2 30 109 [24] Collins C B et al 1999 Phys. Rev. Lett. 82695 [25] Helmer R G and Reich C W 1968 Nucl. Phys. A 114 649 [26] Mullins S M et al 1997 Phys. Lett. B 393 279 [27] L\"{u H F et al 2007 Eur. Phys. J. A 31 273 [28] Warrier Latha S et al 1994 Phys. Rev. C 49871 [29] Yao J M, Chen H and Meng J 2006 Phys. Rev. C 74 024307 [30] Ring P and Schuck P 1980 The Nuclear Many-BodyProblem (New York: Springer) p 269 [31] Long W H et al 2004 Phys. Rev. C 69 034319 [32] Audi G et al 2003 Nucl. Phys. A 729 337 [33] Raman S et al 2001 At. Data Nucl. Data Tables 78 1