摘要Using the quasi-classical trajectory method, the product rotational polarization of the ion-molecule reaction He+D2+ has been calculated at different collision energies on the PALMIERI potential energy surface [Palmieri et al. Mol. Phys. 98 (2000) 1835]. The distribution angle between k and j', P(θr), the distribution of the dihedral angle P(Φr), and the angular distribution of product rotational vectors in the form of polar plots in θr and Φr are calculated. In addition, four polarization-dependent differential cross sections are also presented in the center-of-mass frame, respectively. The results indicate that the rotational polarization of the product HeD+ presents different characters for different collision energies. These discrepancies may be ascribed to the different collision energies and constructions of the potential energy surface.
Abstract:Using the quasi-classical trajectory method, the product rotational polarization of the ion-molecule reaction He+D2+ has been calculated at different collision energies on the PALMIERI potential energy surface [Palmieri et al. Mol. Phys. 98 (2000) 1835]. The distribution angle between k and j', P(θr), the distribution of the dihedral angle P(Φr), and the angular distribution of product rotational vectors in the form of polar plots in θr and Φr are calculated. In addition, four polarization-dependent differential cross sections are also presented in the center-of-mass frame, respectively. The results indicate that the rotational polarization of the product HeD+ presents different characters for different collision energies. These discrepancies may be ascribed to the different collision energies and constructions of the potential energy surface.
(Molecule transport characteristics; molecular dynamics; electronic structure of polymers)
引用本文:
KONG Hao;LIU Xin-Guo;XU Wen-Wu;ZHANG Qing-Gang. Stereodynamics of the He+D2+→HeD++D Reaction on the PALMIERI Surface[J]. 中国物理快报, 2009, 26(5): 53102-053102.
KONG Hao, LIU Xin-Guo, XU Wen-Wu, ZHANG Qing-Gang. Stereodynamics of the He+D2+→HeD++D Reaction on the PALMIERI Surface. Chin. Phys. Lett., 2009, 26(5): 53102-053102.
[1] Yao L et al 2006 Phys. Rev. A 74 062715 [2] Panda A N et al 2005 J. Phys. Chem. A 109 2057 [3] Mahapatra S et al 1995 Chem. Phys. Lett. 241223 [4] Morari C and Jaquet R 2005 J. Phys. Chem. A 109 3396 [5] Panda A N et al 2005 J. Chem. Phys. 122 054304 [6] Chupka W A et al 1968 J. Chem. Phys. 49 5426 [7] Kuntz P J 1972 Chem. Phys. Lett. 16 313 [8] Kuntz P J et al 1975 Chem. Phys. Lett. 34 340 [9] Aquilanti V et al 2000 Chem. Phys. Lett. 318619 [10] Palmieri P et al 2000 Mol. Phys. 98 1835 [11] Chu T S et al 2005 J. Chem. Phys. 122 244322 [12] Chu T S et at 2006 Int. Rev. Phys. Chem. 25201 [13] Tang X N et al 2005 J. Chem. Phys. 122 164301 [14] Xu W W et al 2008 Chem. Phys. Lett. 464 92 [15] Chu T S et al 2008 Phys. Chem. Chem. Phys. 102431 [16] Xu W W et al 2008 Mol. Phys. 106 1787 [17] Tang X N et al 2007 J. Chem. Phys. 127 1 [18] Kim S K et al 1987 Chem. Soc. 84 159 [19] Case D E et al 1978 Mol. Phys. 35 541 [20] Miranda M P et al 1997 J. Chem. Phys. 1064509 [21] Orr-Ewing A J et al 1994 Annu. Rev. Phys.Chem.\, 45\,315 [22] Li W L et al 2007 Chem. Phys. 337 93 [23] Brouard M et al 1996 Mol. Phys. 89 403 [24] Aoiz F J et al 1997 Chem. Phys. Lett. 264 487 [25] Wang M L et al 1998 J. Chem. Phys. 109 5446 [26] Chen M D et al 2002 Chem. Phys. Lett. 357 483 [27] Chen M D et al 2003 J. Chem. Phys. 118 4463 [28] Ma J J et al 2006 Chem. Phys. 327 529 [29] Aoiz F J et al 1996 J. Chem. Phys. 105 4964 [30] Han K L et al 1989 Chin. J. Chem. Phys. 2 323 [31] Li R J et al 1994 Chem. Phys. Lett. 220 281