Relativistic Distorted-Wave Collision Strengths of Ni-, Cu- and Zn-like Au Ions
YANG Ning-Xuan1, DONG Chen-Zhong1,2, JIANG Jun1
1College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 7300702Joint Laboratory of Atomic and Molecular Physics, NWNU\&IMP CAS, Lanzhou 730070
Relativistic Distorted-Wave Collision Strengths of Ni-, Cu- and Zn-like Au Ions
YANG Ning-Xuan1, DONG Chen-Zhong1,2, JIANG Jun1
1College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 7300702Joint Laboratory of Atomic and Molecular Physics, NWNU\&IMP CAS, Lanzhou 730070
Excitation energies and electron impact excitation strengths from the ground states of Ni-, Cu- and Zn-like Au ions are calculated. The collision strengths are computed by a 213-levels expansion for the Ni-like Au ion, 405-levels expansion for the Cu-like Au ion and 229-levels expansion for the Zn-like Au ion. Configuration interactions are taken into account for all levels included. The target state wavefunctions are calculated by using the Grasp92 code. The continuum orbits are computed in the distorted-wave approximation, in which the direct and exchange potentials among all the electrons are included. Excellent agreement is found when the results are compared with previous calculations and recent measurements.
Excitation energies and electron impact excitation strengths from the ground states of Ni-, Cu- and Zn-like Au ions are calculated. The collision strengths are computed by a 213-levels expansion for the Ni-like Au ion, 405-levels expansion for the Cu-like Au ion and 229-levels expansion for the Zn-like Au ion. Configuration interactions are taken into account for all levels included. The target state wavefunctions are calculated by using the Grasp92 code. The continuum orbits are computed in the distorted-wave approximation, in which the direct and exchange potentials among all the electrons are included. Excellent agreement is found when the results are compared with previous calculations and recent measurements.
[1] Griem H R et al 1992 Phys. Fluids B 4 2346 [2]Lindl J et al 1995 Phys. Plasmas 2 3933 [3]Kiyokawa S, Yabe T et al 1985 Phys. Rev. Lett. 54 1999 [4]Bauche-Arnoult C, Luc-Koenig E et al 1986 Phys. Rev.A 33 791 [5]Foord M E, Glenzer S H et al 2000 Phys. Rev. Lett. 85 992 [6]Glenzer S H, Fournier K B et al 2001 Phys. Rev. Lett. 87 045002 [7]May M J, Fournier K B et al 2003 Phys. Rev. E 68 036402 [8]Wong K L, May M J et al 2003 Phys. Rev. Lett. 90 931 [9]Zhang H L, Sampson D H et al 1991 Atomic Data andNuclear Data Tables 48 91 [10]Honda K, Mima K, Koike F 1997 Phys. Rev. E 554594 [11]May M J, Beiersdorfer P and Jordan N 2005 Nucl.Instrum. Methods Phys. Res. B 235 231 [12]Zeng J L, Zhao G and Yuan J M 2007 Atomic Data andNuclear Data Tables 93 199 [13]Jiang J, Dong C Z and Xie L Y 2007 Chin. Phys. Lett. 24 691 [14]Parpia F A et al 1996 Comput. Phys. Commun. 94 249 [15]Dong C Z and Fritzsche S 2005 Phys. Rev. A 72012507 [16]Christopher J F, Sampson D H and Zhang H L 1993 Phys.Rev. A 47 1009 [17]Jiang J, Dong C Z, Xie L Y and Wang J G 2008 Phys.Rev. A 78 022709 [18]Zhang H L and Sampson D H 1990 Phys. Rev. A 41198 [19]Cheng K T and Robert A W 1987 Phys. Rev. A 365453 [20]Shalom A B, Klapisch M and Oreg J 2001 J.Quantitative Spectrosc. Radiative Transfer 71 169 [21]May M J, Fournier K B, Beiersdorfer P and Chen H 2003 Phys. Rev. E 68 036402 [22]Seely J F, Ekberg J O and Borown C M 1986 Phys. Rev.Lett. 57 2924 [23]Marrs R, Beiersdorfer P and Schneider D 1994 Phys.Today 47 27 [24]Gu M F 2004 AIP Conf. Proc. 730 127