摘要We investigate the spin relaxation time of holes in an ultrathin neutral InAs monolayer (1.5ML) and compare with that of electrons, using polarization-dependent time-resolved photoluminescence (TRPL) experiments. With excitation energies above the GaAs gap, we observe a rather slow relaxation of holes (τ1h= 196±17ps) that is in the magnitude similar to electrons (τ1e=354±32ps) in this ultrathin sample. The results are in good agreement with earlier theoretical prediction, and the phonon scattering due to spin-orbit coupling is realized to play a dominant role in the carrier spin kinetics.
Abstract:We investigate the spin relaxation time of holes in an ultrathin neutral InAs monolayer (1.5ML) and compare with that of electrons, using polarization-dependent time-resolved photoluminescence (TRPL) experiments. With excitation energies above the GaAs gap, we observe a rather slow relaxation of holes (τ1h= 196±17ps) that is in the magnitude similar to electrons (τ1e=354±32ps) in this ultrathin sample. The results are in good agreement with earlier theoretical prediction, and the phonon scattering due to spin-orbit coupling is realized to play a dominant role in the carrier spin kinetics.
[1] Awschalom D D, Loss D and Samarth N 2002 Semiconductor Spintronics and Quantum Computation (Berlin:Springer) [2] Ohno Y, Terauchi R, Adachi T, Matsukura F and Ohno H 1999 Phys. Rev. Lett. 83 4196 [3] Kikkawa M J and Awschalom D D 1998 Phys. Rev. Lett. 80 4313 [4] Gotoh H, Ando H, Kamada H, Chavez-Pirson A and Temmyo J1998 Appl. Phys. Lett. 72 1341 [5] Gupta A J, Awschalom D D, Peng X and Alivisatos P A 1999 Phys. Rev. B 59 R10421 [6] Paillard M, Marie X, Renucci P, Amand T, Jbeli A andGerard M J 2001 Phys. Rev. Lett. 86 1634 [7] Stievater H T, Li X, Cubel T, Steel G D, Gammon D, KatzerS D and Park D 2002 Appl. Phys. Lett. 81 4251 [8] Gundogdu K, Hall C K, Boggess F T, Deppe G D and ShchekinB O 2004 Appl. Phys. Lett. 84 2793 [9] Gundogdu K, Hall C K, Koerperick J E, Pryor E C, Flatte EM, Boggess F T, Shchekin B O and Deppe G D 2005 Appl. Phys.Lett. 86 113111 [10] Braun F P, Marie X, Lombez L, Urbaszek B, Amand T,Renuccl P, Kalevich K V, Kavokin V K, Krebs O, Voisin P and MasumotoY 2005 Phys. Rev. Lett. 94 116601 [11] Tsitsishvili E, Baltz V R and Kalt H 2005 Phys.Rev. B 72 155333 [12] Khaetskii V A and Nazarov V Y 2000 Phys. Rev. B 61 12639 [13] Zuti\'c I, Fabian J and Sarma D S 2004 Rev. Mod.Phys. 76 323 [14] Lu C, Cheng J L and Wu M W 2005 Phys. Rev. B 71 175308 [15] Bulaev V D and Loss D 2005 Phys. Rev. Lett. 95 076805 [16] Hall C K, Koerperick J E, Boggess F T, Shchekin B O andDeppe G D 2007 Appl. Phys. Lett. 90 053109 [17] Burkard G and Mater N 2008 Virtual J. Nanoscale Sci.Technol. 7 100 [18] Marzin Y J, G\'{erard M J, Izra\"{el A, Barrier D andBastard G 1994 Phys. Rev. Lett. 73 716 [19] Alonso I M, Ilg M, Ploog K and Trampert A 1995 J.Appl. Phys. 78 1980 [20] Amand T, Dareys B, Baylac B, Marie X, Barrau J, BrousseauM, Dunstan J D and Planel R 1994 Phys. Rev. B 50 11624 [21] Sun Z, Xu Z Y, Ruan X Z, Ji Y, Sun B Q, Wang M and Ni H Q2007 Solid. Stat. Comm. 143 158 [22] Damen C T, Vina L, Cunningham E J, Shah J and Sham J L1991 Phys. Rev. Lett. 67 3432 [23] Ostatnicky T, Cregut O, Gallart M, Gilliot P, Honerlage Band Likforman P J 2007 Phys. Rev. B 75 165311 [24] Tsitsishvili E, Baltz V R and Kalt H 2005 Phys.Rev. B 72 155333