摘要By employing the technique of integration within an ordered product of operators, we derive natural representations of the rotation operator, the two-mode Fourier transform operator and the two-mode parity operator in entangled state representations. As an application, it is proved that the rotation operator constructed by the entangled state representation is a useful tool to solve the exact energy spectra of the two-mode harmonic oscillators with coordinate-momentum interaction.
Abstract:By employing the technique of integration within an ordered product of operators, we derive natural representations of the rotation operator, the two-mode Fourier transform operator and the two-mode parity operator in entangled state representations. As an application, it is proved that the rotation operator constructed by the entangled state representation is a useful tool to solve the exact energy spectra of the two-mode harmonic oscillators with coordinate-momentum interaction.
WANG Shuai;JIANG Ji-Jian;LI Hong-Qi. New Representation of Rotation Operator and Its Application[J]. 中国物理快报, 2009, 26(6): 60304-060304.
WANG Shuai, JIANG Ji-Jian, LI Hong-Qi. New Representation of Rotation Operator and Its Application. Chin. Phys. Lett., 2009, 26(6): 60304-060304.
[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777 [2] Fan H Y and Klauder J R 1994 Phys. Rev. A 49704 [3] Fan H Y, Lu H L and Fan~Y 2006 Ann. Phys. 321480 [4] Fan H Y 2002 Phys. Rev. A 65 064102 [5] Fan H Y and Fan Y 1996 Phys. Rev. A 54 958 [6] Fan H Y and Liu S G 2007 Opt. Lett. 32 1507 [7] Fan H Y 1985 Commun. Theor. Phys. 4 181 [8] Fan H Y 1986 Commun. Theor. Phys. 6 269 [9] Fan H Y and Yuan T N. 1985 Chinese Sci. Bull. 30 1063 (in Chinese) [10] Fan H Y 1988 Phys. Lett. A 131 145 [11] Schwinger J 1965 Quantum Theory of Angular Momentum(New York: Academic) [12] Campos R A, Saleh B E A and Teich M C 1989 Phys.Rev. A 40 1371 [13] Denot D, Bschorr T and Freyberger M 2006 Phys. Rev.A 73 013824 [14] Nha H 2007 Phys. Rev. A 76 053834 [15] Epstein S T 1965 Am. J. Phys. 33 375 [16] Fan H Y and~Chen B 1996 Phys. Rev. A 53 2948 [17] Xu S M et al 2008 Chin. Phys. B 17 4369 [18] Leonhardt U 1997 Measuring the Quantum State ofLight (New York: Cambridge University) [19] Schleich W P 2001 Quantum Optics in Phase Space(New York: Wiley-VCH)