LIU Li-Guo1,2, TIAN Cheng-Lin1, CHEN Ping-Xing1, YUAN Nai-Chang2
1Department of Physics, National University of Defense Technology, Changsha 4100732Institute of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073
A Lower Bound on Concurrence
LIU Li-Guo1,2, TIAN Cheng-Lin1, CHEN Ping-Xing1, YUAN Nai-Chang2
1Department of Physics, National University of Defense Technology, Changsha 4100732Institute of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073
摘要We derive an analytical lower bound on the concurrence for bipartite quantum systems with an improved computable cross norm or realignment criterion and an improved positive partial transpose criterion respectively. Furthermore we demonstrate that our bound is better than that obtained from the local uncertainty relations criterion with optimal local orthogonal observables which is known as one of the best estimations of concurrence.
Abstract:We derive an analytical lower bound on the concurrence for bipartite quantum systems with an improved computable cross norm or realignment criterion and an improved positive partial transpose criterion respectively. Furthermore we demonstrate that our bound is better than that obtained from the local uncertainty relations criterion with optimal local orthogonal observables which is known as one of the best estimations of concurrence.
[1] Nielsen M A and Chuang I L 2000 Quantum Computationand Quantum Information (Cambridge: Cambridge University Press) [2] Peres A 1996 Phys. Rev. Lett. 77 1413 [3] Horodecki M, Horodecki P and Horodecki R 1996 Phys.Lett. A 223 1 [4] Chen P X and Liang L M 2001 Phys. Rev. A 63052306 [5] Chen K and Wu L A 2003 Quantum Inf. Comput. 3193 [6] Rudolph O 2002 arXiv:0202121 [quant-ph] [7] Terhal B 2000 Phys. Lett. A 271 319 T\'{oth G and G\"{uhne O 2005 Phys. Rev. Lett. 94 060501 Jafarizadeh M A, Rezaee M and Seyed Yagoobi S K A 2005 Phys. Rev. A 72 062106 [8] Hofmann H F and Takeuchi S 2003 Phys. Rev. A 68 032103 [9] Samuelsson S and Bj\"{ork G 2006 Phys. Rev. A 73 012319 [10] Khan I A and Howell J C 2004 Phys. Rev. A 70062320 [11] G\"{uhne O 2004 Phys. Rev. Lett. 92 117903 G\"{uhne O, Hyllus P, Gittsovich O and Eisert J 2007 Phys. Rev. Lett. 99 130504 [12] Plenio M B and Virmani S 2007 Quantum Inf. Comput. 7 1 [13] Wootters W K 1998 Phys. Rev. Lett. 80 2245 [14] Uhlmann A 2000 Phys. Rev. A 62 032307 [15] Rungta P, Bu\u{zek V, Caves C M, Hillery M and Milburn GK 2001 Phys. Rev. A 64 042315 [16] Chen K, Albeverio S and Fei S M 2005 Phys. Rev.Lett. 95 040504 [17] de Vicente J I 2007 Phys. Rev. A 75 052320 [18] Zhang C J, Zhang Y S, Zhang S and Guo G C 2007 Phys.Rev. A 76 012334 [19] Zhang C J, Zhang Y S, Zhang S and Guo G C 2008 Phys.Rev. A 77 060301(R) [20] G\"{uhne O, Mechler M, T\'{oth G and Peter A 2006 Phys. Rev. A 74 010301 [21] Yu S X and Liu N L 2005 Phys. Rev. Lett. 95150504 [22] Gittsovich O, G\"{uhne O, Hyllus P and Eisert J 2008 Phys. Rev. A 78 052319 [23] Li M, Fei S M and Wang Z X 2008 J. Phys. A: Math.Theor. 41 202002 [24] Bennett C H et al 1999 Phys. Rev. Lett. 825385 [25] Horodecki P 1997 Phys. Lett. A 232 333