Generalized Positive-Definite Operator in Quantum Phase Space Obtained by Virtue of the Weyl Quantization Rule
HU Li-Yun1,2, FAN Hong-Yi2
1College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 3300222Department of Physics, Shanghai Jiao Tong University, Shanghai 200030
Generalized Positive-Definite Operator in Quantum Phase Space Obtained by Virtue of the Weyl Quantization Rule
HU Li-Yun1,2, FAN Hong-Yi2
1College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 3300222Department of Physics, Shanghai Jiao Tong University, Shanghai 200030
We introduce a generalized positive-definite operator Δg(q,p) by smoothing out the Wigner operator Δw(q,p) and by averaging over the "coarse graining'' function. The function is then regarded as the classical Weyl correspondence of the operator Δg(q,p); in this way we can easily identify a quantum state |Φ> such that Δg(q,p)=|Φ><Φ|, and |Φ> turns out to be a new kind of squeezed coherent state. Correspondingly, the generalized distribution function for any state |φ> is <φ| Δg(q,p) |φ> =|<Φ|φ>|2 , which is obviously positive-definite and is a generalization of the Husimi function.
We introduce a generalized positive-definite operator Δg(q,p) by smoothing out the Wigner operator Δw(q,p) and by averaging over the "coarse graining'' function. The function is then regarded as the classical Weyl correspondence of the operator Δg(q,p); in this way we can easily identify a quantum state |Φ> such that Δg(q,p)=|Φ><Φ|, and |Φ> turns out to be a new kind of squeezed coherent state. Correspondingly, the generalized distribution function for any state |φ> is <φ| Δg(q,p) |φ> =|<Φ|φ>|2 , which is obviously positive-definite and is a generalization of the Husimi function.
HU Li-Yun;FAN Hong-Yi. Generalized Positive-Definite Operator in Quantum Phase Space Obtained by Virtue of the Weyl Quantization Rule[J]. 中国物理快报, 2009, 26(6): 60307-060307.
HU Li-Yun, FAN Hong-Yi. Generalized Positive-Definite Operator in Quantum Phase Space Obtained by Virtue of the Weyl Quantization Rule. Chin. Phys. Lett., 2009, 26(6): 60307-060307.
[1] Wigner E P 1932 Phys. Rev. 40 749 [2] O'Connell R F and Wigner E P 1981 Phys. Lett. A 83 145 Hillery M et al 1984 Phys. Rep. 106 121 [3] Schleich W P 2001 Quantum Optics in Phase Space(Birlin: Wiley-VCH) [4] Husimi K 1940 Proc. Phys. Math. Soc. Jpn. 22264 [5] Fan H Y and Yang Y L 2006 Phys. Lett. A 353439 Fan H Y et al 2008 Chin. Phys. Lett. 25 3539 [6] Fan H Y and Zaidi H R 1987 Phys. Lett. A 124303 [7] Fan H Y 2003 J Opt B: Quantum Semiclass. Opt. 5 R147 Fan H Y and Hu L Y 2008 Chin. Phys. Lett. 25 513 [8] Fan H Y and Liu N L 1999 Chin. Phys. Lett. 16472 Fan H Y 2001 Chin. Phys. Lett. 18 1301 [9] Weyl H 1927 Z. Phys. 46 1 Fan H Y and Li H Q 2007 Chin. Phys. Lett. 24 3322 [10] Scully M O and Zubairy M S 1996 Quantum Optics(Cambridge: Cambridge University) [11] Hu L Y, Fan H Y and Lu H L 2008 J. Chem. Phys. 128 054101 [12] See, e.g., Walls D F and Milburn G J 1994 QuantumOptics (Berlin: Springer) [13] Klauder J R and Skargerstam B S 1985 CoherentStates (Singapore: World Scientific) [14] Fan H Y and Liu S G 2009 IL Nuovo Cimento DOI10.1393/ncb/i2007-10375-9 [15] Jagannathan R et al 1987 Phys. Lett. A 120161 [16] Gracia-Bond'ia J M et al 1988 Phys. Lett. A 128 20 [17] Simon R et al 1987 Phys. Rev. A 36 3868 [18] Sudarshan E C G 1979 Phys. Lett. A 73 269 Sudarshan E C G 1979 Physica A 96 315 [19] Narcowich F J 1988 J. Math. Phys. 29 2036 [20] Narcowich F J et al 1988 Phys. Lett. A 133167 [21] Brocker T and Werner R F 1985 J. Math. Phys. 36 62 [22] Narcowich F J and O'Connell R F 1986 Phys. Rev. A 34 1