摘要We propose a scalable scheme to generate a multiqubit conditional phase gate by using a basic building block, i.e., a weak coherent optical pulse |α> reflected successively from a cavity with trapped atoms. In the scheme, we use a coherent state of light instead of a single photon source, homodyne measurement on a coherent light field instead of single photon detection, which reduces the complexity of the practical experiment. The outcomes of these measurements indicate either completion of the gate or the presence of the original qubits such that the operation can be repeated until it is successful.
Abstract:We propose a scalable scheme to generate a multiqubit conditional phase gate by using a basic building block, i.e., a weak coherent optical pulse |α> reflected successively from a cavity with trapped atoms. In the scheme, we use a coherent state of light instead of a single photon source, homodyne measurement on a coherent light field instead of single photon detection, which reduces the complexity of the practical experiment. The outcomes of these measurements indicate either completion of the gate or the presence of the original qubits such that the operation can be repeated until it is successful.
HUANG Xiu-Hua;CHEN Zhi-Hua;TANG Yao-Xiang;LIN Xiu-Min. Realization of a Multiqubit Conditional Phase Gate by Virtue of a Weak Coherent Light Field[J]. 中国物理快报, 2009, 26(6): 60308-060308.
HUANG Xiu-Hua, CHEN Zhi-Hua, TANG Yao-Xiang, LIN Xiu-Min. Realization of a Multiqubit Conditional Phase Gate by Virtue of a Weak Coherent Light Field. Chin. Phys. Lett., 2009, 26(6): 60308-060308.
[1] Shor P W 1994 Proceedings of the 35th AnnualSymposium on Foundations of Computer Science (Santa Fe, NM: IEEEComputer Society) [2] Grover L K 1997 Phys. Rev. Lett. 79 325 [3] Jaksch P and Papageorgiou A 2003 Phys. Rev. Lett. 91 257902 [4] Paz J P and Roncaglia A 2003 Phys. Rev. A 68052316 [5] Abrams D S and Lloyd S 1999 Phys. Rev. Lett. 83 5162 [6] Sasura M and Buzek V 2001 Phys. Rev. A 64012305 [7] Barenco A, Bennett C H, Cleve R, DiVincenzo D P, MargolusN, Shor P, Sleator T, Smolin J A and Weinfurter H 1995 Phys.Rev. A 52 3457 [8] Durkin G A, Simon C and Bouwmeester D 2002 Phys.Rev. A 88 187902 [9] Pellizzari T, Gardiner S A, Cirac J I and Zoller P 1995 Phys. Rev. Lett. 75 3788 [10] Pachos J and Walther H 2002 Phys. Rev. Lett. 89 187903 [11] Beige A, Braun D, Tregenna B and Knight P L 2000 Phys. Rev. Lett. 85 1762 [12] Jane E, Plenio M B and Jonathan D 2002 Phys. Rev. A 65 050302 R [13] Huo J L, Wang S J and Tao J 2008 Chin. Phys. Lett. 25 813 [14] Liu Q, Ye L 2007 Chin. Phys. Lett. 24 599 [15] Duan L M and Kimble H J 2004 Phys. Rev. Lett. 92 127902 [16] Lin X M, Zhou Z W, Ye M Y, Xiao Y F and Guo G C 2006 Phys. Rev. A 73 012323 [17] Lim Y L, Beige A, Kwek L C 2005 Phys. Rev. Lett. 95 030505 [18] Duan L M, Wang B and Kimble H J 2005 Phys. Rev. A 72 032333 [19] Barrett S D and Kok P 2005 Phys. Rev. A 71060310 [20] Deng Z J, Zhang X L, Wei H, Gao K L and Feng M 2007 Phys. Rev. A 76 044305 [21] Wang B and Duan L M 2005 Phys. Rev. A 72022320 [22] Xue P and Xiao Y F 2006 Phys. Rev. Lett. 97140501 [23] Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502 [24] Munro W J, Nemoto K, Beauoleil R G and Spiller T P 2005 Phys. Rev. A 71 033819 [25] Munro W J, Nemoto K, Spiller T P, Barrett S D, Kok P andBeausoleil R G 2005 J. Opt. B: Quantum Semiclass. Opt. 7S135 [26] Ye J, Vernooy D W and Kimble H J 1999 Phys. Rev.Lett. 83 4987 [27] Shimizu Y, Shiokawa N, Yamamoto N, Kozuma M, Kuga T, DengL and Hagley E W 2002 Phys. Rev. Lett. 89 233001 [28] McKeever J, Boca A, Boozer A D, Buck J R and Kimble H J2003 Nature 425 268 [29] Boca A, Miller R, Birnbaum K M, Boozer A D, McKeever Jand Kimble H J 2004 Phys. Rev. Lett. 93 233603 [30] McKeever J, Buck J R, Boozer A D, Kuzmich A, N\"{aagerlH C, Stamper-Kurn D M and Kimble H J 2003 Phys. Rev. Lett. 90 133602