摘要A copper nitride (Cu3N) thin film is deposited on a Si substrate by the reactive magnetron sputtering method. The XPS measurements of the composite film indicate that the Cu content in the film is increased to 80.82at.% and the value of the Cu/N ratio to 4.2:1 by introducing 4% H2 into the reactive gas. X-ray diffraction measurements show that the film is composed of Cu3N crystallites with an anti-ReO3 structure. The effects of the increase of copper content on the field emission characteristics of the Cu3N thin film are investigated. Significant improvement in emission current density and emission repeatability could be attributed to the geometric field enhancement, caused by numerous surface nanotips, and the decrease of resistivity of the film.
Abstract:A copper nitride (Cu3N) thin film is deposited on a Si substrate by the reactive magnetron sputtering method. The XPS measurements of the composite film indicate that the Cu content in the film is increased to 80.82at.% and the value of the Cu/N ratio to 4.2:1 by introducing 4% H2 into the reactive gas. X-ray diffraction measurements show that the film is composed of Cu3N crystallites with an anti-ReO3 structure. The effects of the increase of copper content on the field emission characteristics of the Cu3N thin film are investigated. Significant improvement in emission current density and emission repeatability could be attributed to the geometric field enhancement, caused by numerous surface nanotips, and the decrease of resistivity of the film.
(Scanning electron microscopy (SEM) (including EBIC))
引用本文:
WANG Tao;LI Rui-Shan;PAN Xiao-Jun;ZHANG Pei-Zeng;ZHOU Ming;SONGXi;XIE Er-Qing. Improvement of Field Emission Characteristics of Copper Nitride Films with Increasing Copper Content[J]. 中国物理快报, 2009, 26(6): 66801-066801.
WANG Tao, LI Rui-Shan, PAN Xiao-Jun, ZHANG Pei-Zeng, ZHOU Ming, SONGXi, XIE Er-Qing. Improvement of Field Emission Characteristics of Copper Nitride Films with Increasing Copper Content. Chin. Phys. Lett., 2009, 26(6): 66801-066801.
[1] Terao N et al 1973 Acad. Sci. Paris B 277 595 [2] Terada S et al 1989 J. Cryst. Growth 94 567 [3] Bryl R and Altman M S 2003 J. Appl. Phys. 944670 [4] Pan Z et al 2000 Adv. Mater. 12 1186 [5] Zhang H Z, Wang R M and Zhu Y W 2004 J. Appl. Phys. 96 624 [6] \v{Zumer M et al 2004 Appl. Phys. Lett. 843615 [7] Geis M W, Twichell J C and Lyszczarz T M 1996 J.Vac. Sci. Technol. B 14 2060 [8] Silva S R P, Amaratunga G A J and Okano K 1999 J.Vac. Sci. Technol. B 17 557 [9] J. Robertson 1999 J. Vac. Sci. Technol. B 17659 [10] Saito Y et al 1998 Appl. Phys. A: Mater. Sci.Process. 67 95 [11] Caol A et al 2002 Appl. Phys. A: Mater. Sci.Process. 74 415 [12] Powers M J et al 1995 Appl. Phys. Lett. 673912 [13] Lee C J et al 2002 Appl. Phys. Lett. 81 3648 [14] Wang T et al 2008 Appl. Surf. Sci. 254 6817 [15] Zhang G A et al 2008 Appl. Surf. Sci. 2545012 [16] Nosakaa T et al 1999 Thin Solid Films 348 8 [17] Vaz F et al 2005 Surf. Coat. Technol. 191 317 [18] Pierson J F 2002 Vacuum 66 59 [19] Fowler R H and Nordheim L W 1928 Proc. R. Soc.London A 119 173 [20] Li R S et al 2008 Appl. Surf. Sci. 255 2787 [21] Kim B H et al 2003 Appl. Phys. Lett. 83 539 [22] Lim S C et al 1999 Appl. Phys. Lett. 75 1179 [23] Yong Z Z et al 2007 Chin. Phys. Lett. 24 233