摘要AlxGa1-xN epilayers with a wide Al composition range (0.2≤x≤ 0.68) were grown on AlN/sapphire templates by low-pressure metalorganic chemical vapour deposition (LP-MOCVD). X-ray diffraction results reveal that both the (0002) and (10-15) full widths at half-maximum (FWHM) of the AlxGa1-xN epilayer decrease with increasing Al composition due to the smaller lattice mismatch to the AlN template. However, the surface morphology becomes rougher with increasing Al composition due to the weak migration ability of Al atoms. Low temperature photoluminescence (PL) spectra show pronounced near band edge (NBE) emission and the NBE FWHM becomes broader with increasing Al composition mainly caused by alloy disorder. Meanwhile, possible causes of the low energy peaks in the PL spectra are discussed.
Abstract:AlxGa1-xN epilayers with a wide Al composition range (0.2≤x≤ 0.68) were grown on AlN/sapphire templates by low-pressure metalorganic chemical vapour deposition (LP-MOCVD). X-ray diffraction results reveal that both the (0002) and (10-15) full widths at half-maximum (FWHM) of the AlxGa1-xN epilayer decrease with increasing Al composition due to the smaller lattice mismatch to the AlN template. However, the surface morphology becomes rougher with increasing Al composition due to the weak migration ability of Al atoms. Low temperature photoluminescence (PL) spectra show pronounced near band edge (NBE) emission and the NBE FWHM becomes broader with increasing Al composition mainly caused by alloy disorder. Meanwhile, possible causes of the low energy peaks in the PL spectra are discussed.
[1] Fischer A J et al 2004 Appl. Phys. Lett. 843394 [2] Hideki H et al 2007 Appl. Phys. Lett. 91071901 [3] Hu X et al 2006 Phys. Status Solidi A 203 1815 [4] Tut T eta l 2008 Appl. Phys. Lett. 92 103502 [5] Jiang H and Egawa T 2007 Appl. Phys. Lett. 90121121 [6] Cherkashinin G et al 2006 Phys. Status Solidi B 243 1713 [7] Zhao D G et al 2006 J. Cryst Growth 289 72 [8] Creighton J R et al 2001 Appl. Phys. Lett. 7867 [9] Wang X L et al 2007 Chin. Phys. Lett. 24 774 [10] Imura M et al 2008 J. Cryst Growth 310 2308 [11] Kato N et al 2008 Phys. Status Solidi C 51559 [12] Zhang J P et al 2003 J. Electron. Mater. 32364 [13] Zhang J P et al 2002 Appl. Phys. Lett. 814392 [14] Kuokstis E et al 2006 Appl. Phys. Lett. 88261905 [15] Liu B et al 2008 J. Cryst Growth 310 4499 [16] Peng M Z et al 2008 Chin. Phys. Lett. 25 2265 [17] Heying B et al 1996 Appl. Phys. Lett. 68 643 [18] Nam K B et al 2005 Appl. Phys. Lett. 86222108 [19] Zhao D G et al 2006 Appl. Surf. Sci. 253 2452 [20] Lee S R et al 1999 Appl. Phys. Lett. 74 3344 [21] Touzi C et al 2005 J. Cryst Growth 279 31 [22] Peng M Z et al 2007 J. Cryst Growth 307 289 [23] Brunner D et al 1997 J. Appl. Phys. 82 5090 [24] Steude G et al 1999 Appl. Phys. Lett. 74 2456 [25] Kuokstis E et al 2006 Appl. Phys. Lett. 88261905 [26] Nam K B et al 2004 Appl. Phys. Lett. 84 5264 [27] Nepal N et al 2006 Appl. Phys. Lett. 89092107