摘要Based on the Martian magnetic field model established by magnetohydrodynamics simulation, we determine the possible precipitation areas of the solar wind electron in the nightside Martian atmosphere, and analyze the electron impact ionization to estimate the height of the nightside Martian ionospheric peak and the electron density profile using the energy flux analysis method. The influences of the single electron energy, electron energy density and ionization efficiency on the altitude of the ionospheric peak and the electron density profile are also investigated. Our results show that the solar wind electron moves along the V-shaped solar wind magnetic field lines, to precipitate into the Martian atmosphere. Due to the crustal magnetic field, the precipitation regions on the nightside are quite narrow and unstable. The impact ionization happens at the altitude of 130-500km, and the height of the ionospheric peak is around 170km, with a peak electron density of 3.0×103cm-3. The simulation results are consistent with the results from Mars 4/5 and Viking occultation measurements.
Abstract:Based on the Martian magnetic field model established by magnetohydrodynamics simulation, we determine the possible precipitation areas of the solar wind electron in the nightside Martian atmosphere, and analyze the electron impact ionization to estimate the height of the nightside Martian ionospheric peak and the electron density profile using the energy flux analysis method. The influences of the single electron energy, electron energy density and ionization efficiency on the altitude of the ionospheric peak and the electron density profile are also investigated. Our results show that the solar wind electron moves along the V-shaped solar wind magnetic field lines, to precipitate into the Martian atmosphere. Due to the crustal magnetic field, the precipitation regions on the nightside are quite narrow and unstable. The impact ionization happens at the altitude of 130-500km, and the height of the ionospheric peak is around 170km, with a peak electron density of 3.0×103cm-3. The simulation results are consistent with the results from Mars 4/5 and Viking occultation measurements.
ZHANG Yi-Teng;LI Lei. Nightside Martian Ionosphere Produced by Electron Impact Ionization[J]. 中国物理快报, 2009, 26(6): 69601-069601.
ZHANG Yi-Teng, LI Lei. Nightside Martian Ionosphere Produced by Electron Impact Ionization. Chin. Phys. Lett., 2009, 26(6): 69601-069601.
[1] Nagy A F et al 2004 Space Sci. Rev. 111 33 [2] Shinagawa H 2000 Adv. Space Res. 26 1599 [3] Zhang M H G et al 1990 J. Geophys. Res. 9517095 [4] Brannon J F et al 1993 Geophys. Res. Lett. 202739 [5] Dobe Z et al 1995 J. Geophys. Res. 100 14507 [6] Shinagawa H 1996 J. Geophys. Res. 101 26921 [7] Acu\~{na M H et al 1998 Science 279 1676 [8] Cloutier P A et al. 1999 Geophys. Res. Lett. 26 2685 [9] Li L and Zhang Y T 2009 J. Geophys. Res.doi:10.1029/2008JA013850 (in press) [10] Zhang Y T and Li L 2009 Chin. J. Space Sci. 29 257 (in Chinese) [11] Fox J L, and Brannon J F 1993 Geophys. Res. Lett. 20 1391 [12] Ma Y J et al 2004 J. Geophys. Res. 109 A07211 [13] Kivelson M G and Russell C T 1995 Introduction toSpace Physics (Cambridge: Cambridge University) [14] Gringauz K I et al 1979 J. Geophys. Res. 842123 [15] The Physical Reference Data of the National Institute ofStandards and Technology,http://physics.nist.gov/PhysRefData/Ionization/Xsection.html [16] Bertucci C et al 2004 Adv. Space. Res. 331938 [17] Shutte N et al 1995 Geophys. Res. Lett. 22863 [18] Zhang Y T and Li L 2008 Master Thesis (Beijing:Center for Space Science and Applied Research, Chinese Academy ofSciences) (in Chinese)