摘要Structural equations and Mei conserved quantity of Mei symmetry for Appell equations in a holonomic system with redundant coordinates are studied. Some aspects, including the differential equations of motion, the definition and the criterion of Mei symmetry, the form of structural equations and Mei conserved quantity of Mei symmetry of Appell equations for a holonomic system with redundant coordinates, are also investigated. Finally, an example is given to illustrate the application of the results.
Abstract:Structural equations and Mei conserved quantity of Mei symmetry for Appell equations in a holonomic system with redundant coordinates are studied. Some aspects, including the differential equations of motion, the definition and the criterion of Mei symmetry, the form of structural equations and Mei conserved quantity of Mei symmetry of Appell equations for a holonomic system with redundant coordinates, are also investigated. Finally, an example is given to illustrate the application of the results.
XIE Guang-Xi;CUI Jin-Chao;ZHANG Yao-Yu;JIA Li-Qun. Structural Equation and Mei Conserved Quantity of Mei Symmetry for Appell Equations with Redundant Coordinates[J]. 中国物理快报, 2009, 26(7): 70202-070202.
XIE Guang-Xi, CUI Jin-Chao, ZHANG Yao-Yu, JIA Li-Qun. Structural Equation and Mei Conserved Quantity of Mei Symmetry for Appell Equations with Redundant Coordinates. Chin. Phys. Lett., 2009, 26(7): 70202-070202.
[1] Noether A E 1918 Nachr. Akad. Wiss. G\"{ottingen.Math. Phys. KI I$\!$I 235 [2] Vujanovi\'c B 1978 Int. J. Nonlinear Mech. 13185 [3] Lutzky M 1979 J. Phys. A: Math. Gen. 12 973 [4] Lutzky M 1979 Phys. Lett. 72 A 86 [5] Lutzky M 1979 Phys. Lett. 75 A 8 [6] Vujanovi\'c B 1986 Acta Mech. 65 63 [7] Mei F X 2000 J. Beijing Institute of Technology 9 120 (in Chinese) [8] Luo S K 2002 Chin. Phys. Lett. 19 449 [9] Luo S K 2003 Chin. Phys. Lett. 20 597 [10] Zheng S W, Xie J and Jia L Q 2006 Chin. Phys. Lett. 23 2924 [11] Zhang Y 2005 Acta Phys. Sin. 54 2980 (inChinese) [12] Jia L Q and Zheng S W 2006 Acta Phys. Sin. 553829 (in Chinese) [13] Luo S K 2007 Chin. Phys. Lett. 24 2463 [14] Luo S K 2007 Chin. Phys. Lett. 24 3017 [15] Jia L Q, Zheng S W and Zhang Y Y 2007 Acta Phys.Sin. 56 5575 (in Chinese) [16] Luo S K,Zhang Y F et al 2008 Advances in the Studyof Dynamics of Constrained Systems (Beijing: Science Press) (inChinese) [17] Jia L Q, Xie J F and Luo S K 2008 Chin. Phys. 17 1560 [18] Fang J H, Liu Y K and Zhang X N 2008 Chin. Phys. 17 1962 [19] Jia L Q, Luo S K and Zhang Y Y 2008 Acta Phys. Sin. 57 2006 (in Chinese) [20] Cai J L, Luo S K and Mei F X 2008 Chin. Phys. 17 3170 [21] Jia L Q, Cui J C, Luo S K and Yang X F 2009 Chin.Phys. Lett. 26 030303 [22] Mei F X 1991 Advanced Analytical Mechanics(Beijing: Beijing Institute of Technology Press) p 131 (in Chinese) [23] Mei F X 2001 Chin. Phys. 10 177 [24] Li R J, QiaoY F and Meng J 2002 Acta Phys. Sin. 51 1 (in Chinese) [25] Luo S K 2002 Acta Phys. Sin. 51 712 (inChinese) [26] Luo S K 2002 J.Changsha Univ. 16 1 (inChinese) [27] Jia L Q, Zhang Y Y and Zheng S W 2007 J. YunnanUniv. 29 589 (in Chinese) [28] Jia L Q, Xie J F and Zheng S W 2008 Chin. Phys. 17 17