摘要First and second sound modes in a uniform fermionic atom gas with Feshbach resonance are investigated in the frame of a two-fluid model at finite temperature. All thermodynamic quantities are calculated for a given thermodynamic potential. The analytical results for thermodynamic quantities and sound velocities in BCS and BEC limits are obtained. The numerical results show that there exists a continuous interpolation for sound velocities of the first and second sound modes at fixed T/Tc between BCS and BEC limits. The existence of the second sound mode indicates the existence of superfluidity.
Abstract:First and second sound modes in a uniform fermionic atom gas with Feshbach resonance are investigated in the frame of a two-fluid model at finite temperature. All thermodynamic quantities are calculated for a given thermodynamic potential. The analytical results for thermodynamic quantities and sound velocities in BCS and BEC limits are obtained. The numerical results show that there exists a continuous interpolation for sound velocities of the first and second sound modes at fixed T/Tc between BCS and BEC limits. The existence of the second sound mode indicates the existence of superfluidity.
HUANG Bei-Bing;WAN Shao-Long. First and Second Sound Modes in a Uniform Fermi Gas[J]. 中国物理快报, 2009, 26(7): 70304-070304.
HUANG Bei-Bing, WAN Shao-Long. First and Second Sound Modes in a Uniform Fermi Gas. Chin. Phys. Lett., 2009, 26(7): 70304-070304.
[1] Kinast J et al 2004 Phys. Rev. Lett. 92 150402 [2] Bartenstein M et al 2004 Phys. Rev. Lett. 92203201 [3] Chin C et al 2004 Science 305 1128 [4] Tisza L 1928 Nature 141 913 [5] Landau L D 1941 J. Phys. (USSR) 5 71 [6] Landau L D 1944 J. Phys. (USSR) 8 1 [7] Fetter A L and Walecka J D 1971 Quantum Theory ofMany-Particle Systems (San Frandisco: McGraw-Hill) chap 14 p 481 [8] Holland M et al 2001 Phys. Rev. Lett. 87120406 [9] Engelbrecht J R et al 1997 Phys. Rev. B 5515153 [10] Chen Q J et al 2005 Phys. Rep. 412 1 [11] Chen Q J et al 2006 Low Temp. Phys. 32 406 [16] Heiselberg H 2006 Phys. Rev. A 73 013607 [17] He Y et al 2007 Phys. Rev. A 76 051602(R) [18] Heiselberg H 2004 Phys. Rev. Lett. 93 040402 [19] Hu H et al 2004 Phys. Rev. Lett. 93 190403 [20] Thomas J E et al 2005 Phys. Rev. Lett. 95120402 [21] Pethick C J and Smith H 2002 Bose-EinsteinCondensation in Dilute Gases (Cambridge: Cambridge University) chap10 p 273 [22] Landau L D and Lifshitz E M 1987 Fluid Mechanics(New York: Pergamon) chap 16 p 518 [23] Huang B B and Wan S L 2007 Phys. Rev. A 75053608 [24] Ghosh T K and Machida K 2006 Phys. Rev. A 73013613 [25] Ohashi Y and Griffin A 2003 Phys. Rev. A 67063612 [26] Zhou Y et al. 2006 Chin. Phys. Lett. 23 2662 [27] Taylor E et al 2006 Phys. Rev. A 74 063626 [28] Chien C C et al 2007 Phys. Rev. Lett. 98110404 [29] Chen Q J et al 1998 Phys. Rev. Lett. 81 4708 [30] Ho T L 2004 Phys. Rev. Lett. 92 090402 [31] Astrakharchik G E et al 2004 Phys. Rev. Lett. 93 200404 [32] Petrov D S et al 2004 Phys. Rev. Lett. 93090404