摘要The F-expansion technique and the homogeneous nonlinear balance principle have been applied for solving a general (1+1)-dimensional nonlinear Schrödinger equation (NLSE) with varying coefficients and a harmonic potential. A family of (1+1)D spatial solitons has been obtained. The evolution features of exact solutions have been investigated.
Abstract:The F-expansion technique and the homogeneous nonlinear balance principle have been applied for solving a general (1+1)-dimensional nonlinear Schrödinger equation (NLSE) with varying coefficients and a harmonic potential. A family of (1+1)D spatial solitons has been obtained. The evolution features of exact solutions have been investigated.
[1] Goral K, Santos L and Lewenstein M 2002 Phys. Rev.Lett. 88 170406 [2] Yakushevich L V 2004 Nonlinear Physics of DNA (NewYork: Wiley VCH) p 115 [3]Gardner C S, Greene J M, Kruskal M D and Miura R M 1967 Phys. Rev. Lett. 19 1095 [4] Zabusky N J and Kruskal M D 1965 Phys. Rev. Lett. 15 240 [5] Stegeman G I and Segev M 1999 Science 2861518 [6] Wang F J, Yan X H, Wang D L 2008 Chin. Phys. Lett. 25 4 [7]Ciattoni A, Rizza C, DelRe E and Palange E 2007 Phys.Rev. Lett. 98 043901 [8] Matveev V B and Salle M A 1991 DardouxTransformations and Solitons (Springer Series in NonlinearDynamics) (Berlin: Springer) p 97 [9] Li W M and Geng X G 2006 Chin. Phys. Lett. 231361 [10]Ablowitz M J 1991 Nonlinear Schr\"{odinger Equationand Inverse Scattering (New York: Cambridge University) p 1 [11] Kruglov V I, Peacock A C and Harvey J D 2003 Phys.Rev. Lett. 90 113902 [12] Filho V S, Abdullaev F K, Gammal A and Tomio L 2001 Phys. Rev. A 63 053603 [13]Marklund M, Shukla P K and Stenflo L 2006 Phys. Rev.E 73 037601 [14]Liu S K, Fu Z T, Liu S D and Zhao Q 2001 Phys. Lett.A 289 69 [15] Fu Z T, Liu S K, Liu S D and Zhao Q 2001 Phys.Lett. A 290 72 [16] Martin A D, Adams C S and Gardiner S A 2007 Phys.Rev. Lett. 98 020402 [17] Perez-Garcia V M, Michinel H and Herrero H 1998 Phys. Rev. A 57 3837 [18] Garnier J and Abdullaev F K 2006 Phys. Rev. A 74 013604 [19]Eiermann B, Treutlein P, Anker Th, Albiez M, Taglieber M,Marzlin K P and Oberthaler M K 2003 Phys. Rev. Lett. 91060402 [20]Chen S H and Yi L 2005 Phys. Rev. E 71 016606 [21]Chen S H, Yi L, Guo D S and Lu P x 2005 Phys. Rev. E 72 016622 [22]Zhong W P, Xie R H, Belic M, Petrovi N and Chen G 2008 Phys. Rev. A 78 023821 [23] Zhou Y B, Wang M L and Miao T D 2004 Phys. Lett. A 323 77 [24] Serkin V N and Hasegawa A 2000 Phys. Rev. Lett. 85 4502 [25] Chen S H, Yang Y H, Yi L, Lu P X and Guo D S 2007 Phys. Rev. E 75 036617 [26]Werner M J and Drummond P D 1997 J. Comput. Phys. 132 312