摘要We introduce polar substituents such as F, Cl, Br into pentacene to enhance the dissolubility in common organic solvents while retaining the high charge-carrier mobilities of pentacene. Geometric structures, dipole moments, frontier molecule orbits, ionization potentials and electron affinities, as well as reorganization energies of those molecules, and of pentacene for comparison, are successively calculated by density functional theory. The results indicate that halopentacenes have rather small reorganization energies (<0.2eV), and when the substituents are in position 2 or positions 2 and 9, they are polarity molecules. Thus we conjecture that they can easily be dissolved in common organic solvents, and are promising candidates for organic semiconductors.
Abstract:We introduce polar substituents such as F, Cl, Br into pentacene to enhance the dissolubility in common organic solvents while retaining the high charge-carrier mobilities of pentacene. Geometric structures, dipole moments, frontier molecule orbits, ionization potentials and electron affinities, as well as reorganization energies of those molecules, and of pentacene for comparison, are successively calculated by density functional theory. The results indicate that halopentacenes have rather small reorganization energies (<0.2eV), and when the substituents are in position 2 or positions 2 and 9, they are polarity molecules. Thus we conjecture that they can easily be dissolved in common organic solvents, and are promising candidates for organic semiconductors.
[1] Bredas J L, Beljonne D, Coropceanu V and Cornil J 2004 Chem. Rev. 104 4971 [2] Wurthner F and Schmidt R 2006 Chem. Phys. Chem. 7 793 [3] Anthony J E 2006 Chem. Rev. 106 5028 [4] Chen X L, Lovinger A J, Bao Z and Sapjeta J 2001 Chem. Mater. 13 1341 [5]Dong G F, Liu Q D, Wang L D and Qiu Y 2008 Chin. Phys.Lett. 25 3375 [6]Wang W, Shi J W, Liang C et al 2005 Chin. Phys. Lett. 22 496 [7]Liang Y, Dong G F, Hu C Y et al 2004 Chin. Phys.Lett. 21 2278 [8]Zhang S M, Shi J W, Liu M D et al 2004 Chin. Phys.Lett. 21 164 [9]Meng H, Bendikov M, Mitchell G, Helgeson R et al 2003 Adv. Mater. 15 1090 [10]Sheraw C D, Jackson T N, Eaton D L and Anthony J E 2003 Adv. Mater. 15 2009 [11] Gundlach D J and Jackson T N 1999 Appl. Phys. Lett. 72 3302 [12] Hohenberg P and Kohn W 1964 Phys. Rev. 136B864 [13] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 [14] Perdew J P and Zunger A 1981 Phys. Rev. B 235048 [15] Becke A D 1988 Phys. Rev. A 38 3098 [16] Lee C, Yang W and Parr R 1988 Phys. Rev. B 37785 [17] Langhoff S R 1996 J. Phys. Chem. 100 2819 [18] Winkler M and Houk K N 2007 J. Am. Chem. Soc. 129 1085 [19] James B F and Eleen F 1996 Exploring Chemistry withElectronic Structure Methods 2$^{nd$ edn (Pittsburgh, PA:Gaussian) [20] Frisch M J et al 2003 Gaussian 03, Revision B.04(Pittsburgh, PA: Gaussian) [21] Scotheim T A, Elsenbaumer R L and Reynolds J 1998 Handbook of Conducting Polymers 2nd edn (New York: Marcel Dekker) [22] Heinecke E, Hartmann D, Muller R and Hese A 1998 J.Chem. Phys. 109 906 [23] Halasinski T M, Hudgins D M, Salama F, Allamandola L Jand Bally T 2000 J. Phys. Chem. A 104 7484 [24] Deleuze M S, Claes L, Kryachko E S and Francois J P 2003 J. Chem. Phys. 119 3106 [25] Rienstra K J C, Tschumper G, Schaefer III H F, Nandi Sand Ellison G B 2002 Chem. Rev. 102 231 [26] Marcus R A 1956 J. Chem. Phys. 24 966 [27] Marcus R A 1956 J. Chem. Phys. 43 679 [28] Barbara P F, Meyer T J and Ratner M A 1996 J. Phys.Chem. 100 13148 [29] Nelsen S F, Trieber D A, Ismagilov R F and Teki Y 2001 J. Am. Chem. Soc. 123 5684 [30] Nelsen S F and Blomgren F 2001 J. Org. Chem. 66 6551 [31] Deng W Q and Goddard W A 2004 J. Phys. Chem. B 108 8614 [32] Podzorov V, Pudalov V M and Gershensohn M E 2003 Appl. Phys. Lett. 82 1739