摘要By making use of the decomposition of U(1) gauge potential theory and the Φ-mapping method we discuss a mixture of interacting neutral and charged Bose condensates, which is supposed to be realized in the interior of neutron stars in the form of a coexistent neutron superfluid and protonic superconductor. We propose that this system possesses vortex line knotted solitons and the topological charges of vortex lines are characterized by the winding numbers of the Φ-mapping. Furthermore the spatial bifurcation of vortices is also discussed.
By making use of the decomposition of U(1) gauge potential theory and the Φ-mapping method we discuss a mixture of interacting neutral and charged Bose condensates, which is supposed to be realized in the interior of neutron stars in the form of a coexistent neutron superfluid and protonic superconductor. We propose that this system possesses vortex line knotted solitons and the topological charges of vortex lines are characterized by the winding numbers of the Φ-mapping. Furthermore the spatial bifurcation of vortices is also discussed.
REN Ji-Rong;GUO Heng;ZHANG Xin-Hui;LI Ran. Topological Aspects in an Interacting Mixture of a Charged and a Neutral Superfluid in Neutron Stars[J]. 中国物理快报, 2009, 26(7): 79701-079701.
REN Ji-Rong, GUO Heng, ZHANG Xin-Hui, LI Ran. Topological Aspects in an Interacting Mixture of a Charged and a Neutral Superfluid in Neutron Stars. Chin. Phys. Lett., 2009, 26(7): 79701-079701.
[1] Hoffberg M et al 1970 Phys. Rev. Lett. 24 175 [2] Baym G, Pethick C and Pines D 1969 Nature 224 673 [3] Anderson P W and Itoh N 1975 Nature 256 25 Alpar M A 1977 Astroph. J. 213 527 Anderson P W et al 1982 Phil. Mag. A 45 227 Pines D et al 1980 Progr. Theor. Phys. Suppl. 69376 Alpar M A et al 1982 Astroph. J. 249 L33 [4] Link B 2003 Phys. Rev. Lett. 91 101101 Buckley K B W et al 2004 Phys. Rev. Lett. 92151102 [5] Carter B astro-ph/0101257 Langlois D astro-ph/0008161 Carter B and Langlois D 1998 Nucl. Phys. B 531478 [6] Alpar M A et al 1984 Astrop. J. 282 533 [7] Vardanyan G A et al 1981 JETP Lett. 81 1731 [8] Faddeev L 1975 Report No IAS Print-75-QS70 Pantaleo M and DeFinis F 1979 Relativity, Quanta, andCosmology (New York: Johnson) vol 1 [9] Babaev E 2004 Phys. Rev. D 70 043001 [10] Faddeev L and Niemi A J 1997 Nature 387 58 Faddeev L and Niemi A J 1999 Phys. Rev. Lett. 821624 [11] Duan Y S, Zhang H and Li S 1998 Phys. Rev. B 58 125 Duan Y S, Li S and Yang G H 1998 Nucl. Phys. B 514 705 Jiang Y and Duan Y S 2000 J. Math. Phys. 24 6463 [12] Leggett A J 1996 Prog. Theor. Phys. 36 901 Babaev E 2004 Nucl. Phys. B 686 397 [13] Andreev A F and Bashkin E 1975 Sov. Phys. JETP 42 164 [14] Wu T T and Yang C N 1975 Phys. Rev. D 12 3845 Wu T T and Yang C N 1975 Phys. Rev. D 14 437 [15] Duan Y S et al 2003 J. Phys. A 36 563 Duan Y S et al 2006 Phys. Rev. B 74 144508 [16] Goursat \`{E 1904 A Course in MathematicalAnalysis translated by Hedrick E R (New York: Dover) vol I [17] Schouten J A 1951 Tensor Analysis for Physics(Oxford: Clarendon)