摘要We report on synchronization between two identical time delay chaotic systems under parameter mismatch. It overcomes some limitations of the previous work where synchronization and antisynchronization has been investigated only in finite-dimensional chaotic systems under parameter mismatch, so we can achieve synchronization and antisynchronization in infinite-dimensional chaotic systems under parameter mismatch. For infinite-dimensional systems modelled by delay differential equations, we find stable synchronization and antisynchronization in long-, moderate- and short-time delay regions, in particular for the hyperchaotic case.
Abstract:We report on synchronization between two identical time delay chaotic systems under parameter mismatch. It overcomes some limitations of the previous work where synchronization and antisynchronization has been investigated only in finite-dimensional chaotic systems under parameter mismatch, so we can achieve synchronization and antisynchronization in infinite-dimensional chaotic systems under parameter mismatch. For infinite-dimensional systems modelled by delay differential equations, we find stable synchronization and antisynchronization in long-, moderate- and short-time delay regions, in particular for the hyperchaotic case.
ZHANG Yan;LU Shuang;WANG Ying-Hai. Synchronization of Chaos in Time-Delayed Systems under Parameter Mismatch[J]. 中国物理快报, 2009, 26(9): 90501-090501.
ZHANG Yan, LU Shuang, WANG Ying-Hai. Synchronization of Chaos in Time-Delayed Systems under Parameter Mismatch. Chin. Phys. Lett., 2009, 26(9): 90501-090501.
[1] Zhao H et al 1998 Phys. Rev. E 58 4383 [2] Liu Y W et al 1999 Phys. Lett. A 256 166 [3] Qi W, Zhang Y and Wang Y H 2007 Chin. Phys. Soc. 16 2259 [4] Sun J T, Zhang Y and Wang Y H 2008 Chin. Phys. Lett. 25 2389 [5] Feng C F, Zhang Y and Wang Y H 2008 Chaos, Solitonsand Fractals 38 743 [6] Feng C F, Zhang Y and Wang Y H 2007 Chin. Phys.Lett. 24 50 [7] Feng C F, Zhang Y and Wang Y H 2006 Chin. Phys.Lett. 23 1418 [8] Pyragas K 1998 Int. J. Bifur. Chaos Appl. Sci. Eng. 8 1839 [9] Argyris A et al 2005 Nature 438 343 [10] Mohanty P 2005 Nature 437 325 [11] Hoppensteadt F and Izhikevich E 2005 U.S. Patent No6957204 [12] Wang Q Y and Lu Q S 2005 Chin. Phys. Lett. 22543 [13] Venkatarmani S C, Hunt B and Ott E 1996 Phys. Rev.Lett. 77 5631 Astakhov V et al 1998 Phys. Rev. E 58 5620 Viana R L et al 2005 Physica D 206 94 [14] Pikovsky A, Rosenblum M and Kurths J Synchronization: A Universal Concept in Nonlinear Sciences 2001(Cambridge: Cambridge University) [15] Belykh V, Belykh I and Hasler M 2000 Phys. Rev. E 62 6332 [16] Cao L Y and Lai Y C 1998 Phys. Rev. E 58 382 [17] Wedekind I and Parlitz U 2002 Phys. Rev. E 66026218 [18] Liu W Q et al 2006 Phys. Rev. E 73 057203 [19] Grosu I et al 2008 Phys. Rev. Lett. 100234102 [20] Jackson E A, and Grosu I 1995 Physica D 85 1 Grosu I 1997 Phys. Rev. E 56 3079 Grosu I 2007 Int. J. Bifur. Chaos Appl. Sci. Eng. 17 3519 [21] Li J N and Hao B L 1989 Commun. Theor. Phys. 11 265