摘要A scheme for a microwave atomic clock is proposed for Cs or Rb atoms trapped in a blue detuned optical lattice. The ac Stark shift of the clock transition due to a trapping laser is calculated. We analyze it at some specific laser wavelength. Compared with the case of the fountain clock, the cavity related shifts, the collision shift and the Doppler effect are eliminated or suppressed dramatically in an atomic lattice clock. By analyzing various sources of clock uncertainty, a microwave atomic lattice clock with a high accuracy and small volume is feasible.
Abstract:A scheme for a microwave atomic clock is proposed for Cs or Rb atoms trapped in a blue detuned optical lattice. The ac Stark shift of the clock transition due to a trapping laser is calculated. We analyze it at some specific laser wavelength. Compared with the case of the fountain clock, the cavity related shifts, the collision shift and the Doppler effect are eliminated or suppressed dramatically in an atomic lattice clock. By analyzing various sources of clock uncertainty, a microwave atomic lattice clock with a high accuracy and small volume is feasible.
(Radio-frequency, microwave, and infrared spectra)
引用本文:
ZHOU Xiao-Ji;CHEN Xu-Zong;CHEN Jing-Biao;WANG Yi-Qiu;LI Jia-Ming. Microwave Atomic Clock in the Optical Lattice with Specific Frequency[J]. 中国物理快报, 2009, 26(9): 90601-090601.
ZHOU Xiao-Ji, CHEN Xu-Zong, CHEN Jing-Biao, WANG Yi-Qiu, LI Jia-Ming. Microwave Atomic Clock in the Optical Lattice with Specific Frequency. Chin. Phys. Lett., 2009, 26(9): 90601-090601.
[1] Wynands R and Weyers S 2005 Metrologia 42 S64 [2] Diddams S A et al 2004 Science 306 1318 [3] Heavner T P et al 2005 Metrologia 42 411 [4] Chu L T et al 2007 Chin. Phys. Lett. 241177 [5] Katori H et al 2003 Phys. Rev. Lett. 91 173005 [6] Oskay W H et al 2006 Phys. Rev. Lett. 97020801 [7] Rosenband T et al 2008 Science 319 1808 [8] Flambaum V V et al 2008 Phys. Rev. Lett. 101220801 [9] Rosenbusch P et al 2009 Phys. Rev. A 79 013404 [10] Fuentealba P, Reyes O 1993 J. Phys. B: At. Mol. Opt.Phys. 26 2245 [11] Zhang J W, Yang D H 2007 Chin. Phys. Lett. 24 1553. [12] Griffin P F 2005 PhD thesis (Durham University) [13] R. Grimm et al 2000 Adv. Atom. Mol. Opt. Phys 42 95 [14] Zheng Y N et al 2006 Chin. Phys. Lett. 231687 [15] Steck D A 2001 Cesium, Rubidium D Line Datahttp://steck.us/alkalidata [16] http://cfa-www.harvard.edu/amdata/ampdata/kurucz23/sekur.html. [17] http://physics.nist.gov/PhysRefData/ASD/lines-form.html. [18] Arimondo E et al 1997 Rev. Mod. Phys. 49 31 [19] Takamoto M et al 2009 Phys. Rev. Lett. 102063002 [20] Lemonde P and Wolf P 2005 Phys. Rev. A 72033409 [21] Davidson N et al 1995 Phys. Rev. lett. 741311 [22] Romalis M V, Fortson E N 1999 Phys. Rev. A 594547 [23] O'Hara K M et al 1999 Phys. Rev. Lett. 824204 [24] O'Hara K M et al 2001 Phys. Rev. A 63 043403 [25] Potvliege R M, Adams C S 2006 New J. Phys. 8163 [26] Gehm M E 1998 Phys. Rev. A 58 3914 [27] Kuhr S et al 2005 Phys. Rev. A 72 023406 [28] Boyd M M 2007 PHD thesis (University of Colorado) [29] Szymaniec K et al 2005 Metrologia 42 49