Diode-Pumped Quasi-Three-Level Passively Q-Switched Nd:GGG Laser with a Codoped Nd,Cr:YAG Saturable Absorber
HE Kun-Na1,2, GAO Chun-Qing1, WEI Zhi-Yi2, LI Qi-Nan2, ZHANG Zhi-Guo2, JIANG Hai-He3, YIN Shao-Tang3, ZHANG Qing-Li3
1School of Opto-Electronics, Beijing Institute of Technology, Beijing 1000812Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, PO Box 603, Beijing 1001903Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031
Diode-Pumped Quasi-Three-Level Passively Q-Switched Nd:GGG Laser with a Codoped Nd,Cr:YAG Saturable Absorber
HE Kun-Na1,2, GAO Chun-Qing1, WEI Zhi-Yi2, LI Qi-Nan2, ZHANG Zhi-Guo2, JIANG Hai-He3, YIN Shao-Tang3, ZHANG Qing-Li3
1School of Opto-Electronics, Beijing Institute of Technology, Beijing 1000812Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, PO Box 603, Beijing 1001903Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031
摘要We demonstrate the first quasi-three-level passively Q-switched Nd:GGG laser at 937nm using a Nd,Cr:YAG crystal as the saturable absorber. The dependences of the average output power, the repetition rate and the pulse width on the incident pump power are obtained. A maximum average output power of 1.18W with repetition rate of 35kHz and pulse width of 45ns is achieved at an incident pump power of 18.3W. The corresponding optical-to-optical and slope efficiencies are 6% and 10%, respectively.
Abstract:We demonstrate the first quasi-three-level passively Q-switched Nd:GGG laser at 937nm using a Nd,Cr:YAG crystal as the saturable absorber. The dependences of the average output power, the repetition rate and the pulse width on the incident pump power are obtained. A maximum average output power of 1.18W with repetition rate of 35kHz and pulse width of 45ns is achieved at an incident pump power of 18.3W. The corresponding optical-to-optical and slope efficiencies are 6% and 10%, respectively.
[1] Gao J et al 2008 Laser Phys. Lett. 5 577 [2] Spiekermann S et al 2001 Appl. Opt. 40 1979 [3] Kimmelma O et al 2007 Opt. Commun. 273 496 [4] Zhang L et al 2005 Chin. Phys. Lett. 22 1420 [5] Wang S M et al 2006 Chin. Phys. Lett. 23 619 [6] Li S, Zhou S, Wang P, Chen Y C and Lee K K 1993 Opt.Lett. 18 203 [7] Lv L, Wang L, Fu P et al 2001 Opt. Lett. 26 72 [8] Li D H, Wang L et al 2002 Chin. Phys. Lett. 19504 [9] Linares R C 1964 Solid State Commun. 2 229 [10] Lupei V, Lupei A, Pavel N, Taira T and Ikesue A 2001 Appl. Phys. B 73 757 [11] Mahajan R, Shah A L, Pal S and Kumar A 2007 Opt.Laser Technol. 39 1406 [12] Yoshida K, Yoshida H and Kato Y 1988 IEEE J. QuantumElectron. 24 1188 [13] Zhang C Y, Gao C Q, Zhang L, Wei Z Y and Zhang Z G 2007 Chin. Phys. Lett. 24 440 [14] Chen Y F, Lan Y P and Chang H L 2001 IEEE J. QuantumElectron. 37 462 [15] Song F, Zhang C B, Ding X, Xu J J and Zhang G Y 2002 Appl. Phys. Lett. 81 2145 [16] Dong J, Lu J R and Ueda K 2004 J. Opt. Soc. Am. B 21 2130 [17] Agnesi A and Dell'Acqua S 2003 Appl. Phys. B 76 351 [18] Li Q N, Wang S M, Du S F, Shi Y X, Xing J, Zhang D X,Feng B H, Zhang Z G and Zhang S W 2008 Opt. Commun. 2812184