Structural and Magnetic Properties of Fe-Doped Anatase TiO2 Films Annealed in Vacuum
XU Jian-Ping1,2, LI Lan1,3, LV Li-Ya4, ZHANG Xiao-Song1,3, CHEN Xi-Ming1,2, WANG Jian-Feng4, ZHANG Feng-Ming4, ZHONG Wei4, DU You-Wei4
1School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 3003842Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education),Tianjin University of Technology, Tianjin 3003843Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin 3003844Jiangsu Provincial Laboratory for Nanotechnology, National Laboratory of Solid State Microstructure, and Department of Physics, Nanjing University, Nanjing 210093
Structural and Magnetic Properties of Fe-Doped Anatase TiO2 Films Annealed in Vacuum
XU Jian-Ping1,2, LI Lan1,3, LV Li-Ya4, ZHANG Xiao-Song1,3, CHEN Xi-Ming1,2, WANG Jian-Feng4, ZHANG Feng-Ming4, ZHONG Wei4, DU You-Wei4
1School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 3003842Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education),Tianjin University of Technology, Tianjin 3003843Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin 3003844Jiangsu Provincial Laboratory for Nanotechnology, National Laboratory of Solid State Microstructure, and Department of Physics, Nanjing University, Nanjing 210093
摘要Structural and magnetic properties of Fe-doped anatase TiO2 films fabricated by sol-gel spin coating are investigated. X-ray diffraction measurements reveal that Fe3+ ions are incorporated into the TiO2 lattice. No ferromagnetism-related secondary phases and magnetic nanoparticles are observed in the films. The presence of electron paramagnetic resonance signals at g ~ 2.0 supports oxygen vacancies and/or defects generated in the films after annealing in vacuum. Magnetic measurements indicate that Fe-doped anatase TiO2 films are ferromagnetic at room temperature. These observations suggest that oxygen vacancies and/or defects are energetically favorable for the long range Fe3+-Fe3+ ferromagnetic coupling in Fe-doped anatase TiO2 films.
Abstract:Structural and magnetic properties of Fe-doped anatase TiO2 films fabricated by sol-gel spin coating are investigated. X-ray diffraction measurements reveal that Fe3+ ions are incorporated into the TiO2 lattice. No ferromagnetism-related secondary phases and magnetic nanoparticles are observed in the films. The presence of electron paramagnetic resonance signals at g ~ 2.0 supports oxygen vacancies and/or defects generated in the films after annealing in vacuum. Magnetic measurements indicate that Fe-doped anatase TiO2 films are ferromagnetic at room temperature. These observations suggest that oxygen vacancies and/or defects are energetically favorable for the long range Fe3+-Fe3+ ferromagnetic coupling in Fe-doped anatase TiO2 films.
XU Jian-Ping;LI Lan;LV Li-Ya;ZHANG Xiao-Song;CHEN Xi-Ming;WANG Jian-Feng;ZHANG Feng-Ming;ZHONG Wei;DU You-Wei. Structural and Magnetic Properties of Fe-Doped Anatase TiO2 Films Annealed in Vacuum[J]. 中国物理快报, 2009, 26(9): 97502-097502.
XU Jian-Ping, LI Lan, LV Li-Ya, ZHANG Xiao-Song, CHEN Xi-Ming, WANG Jian-Feng, ZHANG Feng-Ming, ZHONG Wei, DU You-Wei. Structural and Magnetic Properties of Fe-Doped Anatase TiO2 Films Annealed in Vacuum. Chin. Phys. Lett., 2009, 26(9): 97502-097502.
[1] Matsumoto Y et al 2001 Science 29 854 [2] Errico L A et al 2005 Phys. Rev. B 72 184425 [3] Kittilstved K R et al 2005 Phys. Rev. Lett. 94147209 [4] Ney A et al 2008 Phys. Rev. Lett. 100 157201 [5] Heo Y W et al 2004 Electrochem. Solid State Lett. 7 G309 [6] Kharel P et al 2007 J. Appl. Phys. Lett. 10109H117 [7] Alaria J et al 2006 J. Appl. Phys. 99 08M118 [8] Fukumura T et al 2001 Appl. Phys. Lett. 78 958 [9] Zhang H W et al 2006 Solid State Commun. 137272 [10] Chen J et al 2006 Phys. Rev. B 74 235207 [11] Hsu H S et al 2006 Appl. Phys. Lett. 88242507 [12] Long P et al 2008 Chin. Phys. Lett. 25 1438 [13] Lee H M and Kim C S 2007 J. Appl. Phys. 10109H110 [14] Peng H W et al 2008 J. Phys.: Condens. Matter 20 125207 [15] Wen Q Y et al 2007 Chin. Phys. Lett. 24 2955 [16] Liu L F et al year??? Chin. Phys. Lett. 252638 [17] Cohen G et al 2007 J. Appl. Phys. 101 09H106 [18] Kittilstved K R et al 2006 Nature Mater. 5291 [19] Coey J M D et al 2005 Nature Mater. 4 173 [20] Bergqvist L et al 2004 Phys. Rev. Lett. 93137202 [21] Coey J M D et al 2004 Appl. Phys. Lett. 841332 [22] Griffin K A et al 2005 Phys. Rev. Lett. 94157204 [23] Nguyen H H et al 2006 Phys. Rev. B 73 132404 [24] Soack D Y et al 2006 J. Phys.: Condens. Matter 18 L355 [25] Zhao Q et al 2008 Chin. Phys. Lett. 25 1811 [26] Diebold U 2003 Surf. Sci. Rep. 48 53 [27] Sonawane R S et al 2002 Mater. Chem. Phys. 77744 [28] Jeong B S et al 2004 Appl. Phys. Lett. 842608 [29] Zhao X T et al 2006 Curr. Appl. Phys. 6 931 [30] Dyson F J 1955 Phys. Rev. 98 349 [31] Morgunov R B et al 2007 Phys. Solid State 49296 [32] Hurum D C, Agrios A G et al 2006 J. Electron.Spectrosc. Relat. Phenom. 150 155 [33] Wang Z J et al 2007 J. Appl. Phys. 95 7384 [34] Furukawa A et al 2008 J. J. Appl. Phys. 478799 [35] Lee H M et al 2007 J. Magn. Magn. Mater. 3102099 [36] Xu J P et al 2007 J. Phys. D: Appl. Phys. 404757