Improved Performance of Polymer Light-Emitting Diodes with an Electron Transport Emitter by Post-Annealing
XIONG Yan1,2, PENG Jun-Biao1, WU Hong-Bin1, WANG Jian1
1Institute of Polymer Optoelectronic Materials and Devices, Key Laboratory of Special Functional Materials, South China University of Technology, Guangzhou 5106402School of Physics Science and Technology, Yangtze University, Jingzhou 434023
Improved Performance of Polymer Light-Emitting Diodes with an Electron Transport Emitter by Post-Annealing
XIONG Yan1,2, PENG Jun-Biao1, WU Hong-Bin1, WANG Jian1
1Institute of Polymer Optoelectronic Materials and Devices, Key Laboratory of Special Functional Materials, South China University of Technology, Guangzhou 5106402School of Physics Science and Technology, Yangtze University, Jingzhou 434023
摘要The enhancement of electroluminescent (EL) performance of polymer light emitting diodes (PLEDs) with electron transport emitter poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) through thermal annealing treatment is investigated. Post-annealing of the PLEDs at temperature 120°C over the glass transition temperature of F8BT (99°C) could bring about an improvement of EL efficiency to more than twice that of the untreated devices, up to 6.02cd/A. The improvement of the EL efficiency is due to the balance of electron and hole carriers in the exciton recombination zone, because the dominative electron current in the PLEDs could be reduced by post-annealing in terms of both issues of electron transport limited in the F8BT film and electron injection decreased by the interface between F8BT/cathode.
Abstract:The enhancement of electroluminescent (EL) performance of polymer light emitting diodes (PLEDs) with electron transport emitter poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) through thermal annealing treatment is investigated. Post-annealing of the PLEDs at temperature 120°C over the glass transition temperature of F8BT (99°C) could bring about an improvement of EL efficiency to more than twice that of the untreated devices, up to 6.02cd/A. The improvement of the EL efficiency is due to the balance of electron and hole carriers in the exciton recombination zone, because the dominative electron current in the PLEDs could be reduced by post-annealing in terms of both issues of electron transport limited in the F8BT film and electron injection decreased by the interface between F8BT/cathode.
XIONG Yan;PENG Jun-Biao;WU Hong-Bin;WANG Jian. Improved Performance of Polymer Light-Emitting Diodes with an Electron Transport Emitter by Post-Annealing[J]. 中国物理快报, 2009, 26(9): 97801-097801.
XIONG Yan, PENG Jun-Biao, WU Hong-Bin, WANG Jian. Improved Performance of Polymer Light-Emitting Diodes with an Electron Transport Emitter by Post-Annealing. Chin. Phys. Lett., 2009, 26(9): 97801-097801.
[1] Xiong Y, Zhang Y, Zhou J L, Peng J B, Huang W B and Cao Y2007 Chin. Phys. Lett. 24 3547 [2] Huang Y, Xu Y H, Xu W, Zhou J G, Peng J B and Cao Y 2007 Chin. Phys. Lett. 24 2097 [3] Hou Y, Koeberg M and Bradley D D C 2003 Synth. Met. 139 859 [4] Yan H, Scott B J , Huang Q and Marks T J 2004 Adv.Mater. 16 1948 [5] Reynolds K J , Barker J A, Greenham N C, Friend R H andFrey G L 2002 J. Appl. Phys. 92 7556 [6] Li J, Sano T, Hirayama Y, Tomita T, Fujii H and Wakisaka K2006 J. Appl. Phys. 100 034506 [7] Gong X, Wang S, Moses D, Bazan G C and Heeger A J 2005 Adv. Mater. 17 2053 [8] Huang J, Li G, Wu E, Xu Q and Yang Y 2006 Adv.Mater. 18 114 [9] Zaumseil J, Donley C L , Kim J S , Friend R H andSirringhaus H 2006 Adv. Mater. 18 2708 [10] Xia R, Quiles M C, Heliotis G, Stavrinou P, Whitehead K Sand Bradley D D C 2005 Synth. Met. 155 274 [11] Kim Y, Cook S, Choulis S A, Nelson J, Durrant J R andBradley D D C 2005 Synth. Met. 152 105 [12] Campbell A J, Bradley D D C and Antoniadis H 2001 Appl. Phys. Lett. 79 2133 [13] Kim Y and Bradley D D C 2005 Cur. Appl. Phys. 5 222 [14] Yao B, Xie Z Y, Yang J W, Cheng Y X and Wang L X 2007 Chin. Phys. Lett. 24 1383 [15] Kim J, Lee J, Han C W, Lee N Y and Chung I J 2003 Appl. Phys. Lett. 82 4238 [16] Niu Y H, Hou Q, Yuan M and Cao Y 2003 Synth. Met. 135--136 477 [17] Lee T W and Park O O 2000 Adv. Mater. 12 801 [18] Chin B D, Duan L, Kim M H, Lee S T and Chung H K 2004 Appl. Phys. Lett. 85 4496 [19] Donley C L, Zaumseil J, Andreasen J W, Nielsen M M,Sirringhaus H, Friend R H and Kim J S 2005 J. Am. Chem. Soc. 127 12890 [20] Grey J K, Kim D Y, Donley C L, Miller W L, Kim J S, SilvaC, Friend R H and Barbara P F 2006 J. Phys. Chem. B 11018898 [21] Herguth P, Jiang X, Liu M S and Jen A K Y 2002 Macromolecules 35 6094 [22] H\"{ansel H, M\"{uller D C, Gross M, Meerholz K andKrausch G 2003 Macromolecules 36 4932 [23] Cao Y, Yu G, Parker I D and Heeger A J 2000 J.Appl. Phys. 88 3618 [24] Ahn J H, Wang C, Widdowson N E, Pearson C, Bryce M R andPettya M C 2005 J. Appl. Phys. 98 054508 [25] Niu Y H, Hou Q and Cao Y 2002 Appl. Phys. Lett. 81 634