摘要The energy eigenvalues and eigenfunctions of the Schrödinger equation for Eckart potential as well as the parity-time-symmetric version of the potential in three dimensions with the centrifugal term are investigated approximately by using the Nikiforov-Uvarov method. To show the accuracy of our results, we calculate the energy eigenvalues for various values of n and l. It is found that the results are in good agreement with the numerical solutions for short-range potential (large a). For the case of 1/a i/a, the potential is also studied briefly.
Abstract:The energy eigenvalues and eigenfunctions of the Schrödinger equation for Eckart potential as well as the parity-time-symmetric version of the potential in three dimensions with the centrifugal term are investigated approximately by using the Nikiforov-Uvarov method. To show the accuracy of our results, we calculate the energy eigenvalues for various values of n and l. It is found that the results are in good agreement with the numerical solutions for short-range potential (large a). For the case of 1/a i/a, the potential is also studied briefly.
ZHANG Ai-Ping;QIANG Wen-Chao;LING Ya-Wen. Approximate Solutions of the Schrödinger Equation for the Eckart Potential and Its Parity-Time-Symmetric Version Including Centrifugal Term[J]. 中国物理快报, 2009, 26(10): 100302-100302.
ZHANG Ai-Ping, QIANG Wen-Chao, LING Ya-Wen. Approximate Solutions of the Schrödinger Equation for the Eckart Potential and Its Parity-Time-Symmetric Version Including Centrifugal Term. Chin. Phys. Lett., 2009, 26(10): 100302-100302.
[1] Comtet A et al 1985 Phys. Lett. B 150 159 Filho E D and Ricotta R M 2000 Phys. Lett. A 269269 Liang Z et al 2005 Chin. Phys. Lett. 22 2465 [2] Schiff L I 1955 Quantum Mechanics 3rd edn (New York:McGraw-Hill) [3] Landau L D and Lifshitz E M 1977 Quantum Mechanics(Non-Relativistic Theory) 3rd edn (Oxford: Pergamon) [4] Greene R L, Aldrich C 1976 Phys. Rev. A 142363 [5] Bayrak O et al 2006 J. Phys. A: Math. Gen. 3911521 G\"{on\"{ul.B et al 2000 Phys. Lett. A 275 238 [6] Dong S H and Garc\'{\ia-Ravelo J 2007 PhysicaScripta 75 307 Diaf A et al 2005 Ann. Phys. 317 354 [7] Qiang W C et al 2009 Physica Scripta 79 065011 [8] Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243 Bender C M et al 1999 J. Math. Phys. 40 2201 Bender C M et al 2000 J. Math. Phys. 41 6381 Bender C M, Weniger E J 2001 J. Math. Phys. 422167 Bender C M et al 2002 Phys. Lett. A 302 286 [9] Jia C S, Sun Y and Li Y 2002 Phys. Lett. A 305231 L\'{evai G 2008 Phys. Lett. A 372 6484 Soylu A et al 2008 Chin. Phys. Lett. 25 2754 L\'{evai G 2006 J. Phys. A 39 10161 [10]L\'{evai G 2007 J. Phys. A 40 F273 [11]Eckart C 1930 Phys. Rev 35 1303 Ol\u{gar E et al 2006 Chin. Phys. Lett. 23 539 [12] Nikiforov A F and Uvarov V B 1988 Special Functionof Mathematical Physics (Basel: Birkhauser) [13]Chen Y et al 1992 Acta Chim. Sin. 50 1163 (inChinese) [14]Lucha W et al 1999 Int. J. Mod. Phys. C 10 607 [15]E\u{grifes H et al 1999 Physica Scripta 60195 [16]Solombrino L quant-ph/0203101