摘要We numerically demonstrate a high-nonlinearity single-mode holey fiber with flattened dispersion around the Ti-Za laser band at 800nm. The dispersion profile of the fiber has the shape of a quadratic curve, which reaches its maximum 5.96ps12539;km-112539;nm-1 at 800nm and its minimum -0.897ps12539;km-112539;nm-1 at both 750 and 850nm. The nonlinear coefficient is 170W-1km-1 at 800nm and no higher order modes exit. A six-layer air-hole cladding ensures a loss less than 0.067db/m in the 750 to 850nm range. Two more air-hole rings will reduce the loss to below 0.1db/km.
Abstract:We numerically demonstrate a high-nonlinearity single-mode holey fiber with flattened dispersion around the Ti-Za laser band at 800nm. The dispersion profile of the fiber has the shape of a quadratic curve, which reaches its maximum 5.96ps12539;km-112539;nm-1 at 800nm and its minimum -0.897ps12539;km-112539;nm-1 at both 750 and 850nm. The nonlinear coefficient is 170W-1km-1 at 800nm and no higher order modes exit. A six-layer air-hole cladding ensures a loss less than 0.067db/m in the 750 to 850nm range. Two more air-hole rings will reduce the loss to below 0.1db/km.
WANG Wei;HOU Lan-Tian;LIU Zhao-Lun;ZHOU Gui-Yao;. Design of a High-Nonlinearity Single-Mode Holey Fiber with Flattened Dispersion around 800nm[J]. 中国物理快报, 2009, 26(11): 114202-114202.
WANG Wei, HOU Lan-Tian, LIU Zhao-Lun, ZHOU Gui-Yao,. Design of a High-Nonlinearity Single-Mode Holey Fiber with Flattened Dispersion around 800nm. Chin. Phys. Lett., 2009, 26(11): 114202-114202.
[1] Saitoh K and Koshiba M 2004 Opt. Express 122027 [2] Kudlinski A, George A K, Knight J C, Travers J C, Rulkov AB, Popov S V and Taylor J R 2006 Opt. Express 14 5715 [3] Knight J C, Birks T A, Russell P St J and Atkin D M 1996 Opt. Lett. 21 1547 [4] Huttunen A and Torma P 2005 Opt. Express 13627 [5] Varshney S K, Fujisawa T, Saitoh K and Koshiba M 2005 Opt. Express 13 9516 [6] Varshney S K, Fujisawa T, Saitoh K and Koshiba M 2006 Opt. Express 14 3528 [7] Gerome F, Auguste J L and Blondy J M 2004 Opt. Lett. 29 2725 [8] Ferrando A, Silvestre E, Miret J J and Andres P 2000 Opt. Lett. 25 790 [9] Ferrando A, Silvestre E, Andres P, Miret J J and Andres MV 2001 Opt. Express 9 687 [10] Renversez G, Kuhlmey B and McPhedran R 2003 Opt.Lett. 28 989 [11] Poli F, Cucinotta A, Selleri S and Bouk A H 2004 IEEE Photon. Technol. Lett. 16 1065 [12] Wu T L and Chao C H 2005 IEEE Photon. Technol.Lett. 17 67 [13] Hoo Y L, Jin W, Ju J, Ho H L and Wang D N 2004 Opt.Commun. 242 327 [14] Liu Z, Liu X, Li S, Zhou G, Wang W and Hou L 2007 Opt. Commun. 272 92 [15] Haxha S and Ademgil H 2008 Opt. Commun. 281278 [16] Wang W, Gao F, Hou L and Zhou G 2008 Chin. Phys.Lett. 25 2055 [17] Wang W, Hou L, Liu Z and Zhou G 2008 Chin. Phys.Lett. 25 3682 [18] White T P, Kuhlmey B T, McPhedran R C, Maystre D,Renversez G, Martijn de Sterke C and Botten L C 2002 J. Opt.Soc. B 19 2322 [19] Kuhlmey B T, White T P, Renversez G, Maystre D, Botten LC, de Sterke C M and McPhedran R C 2002 J. Opt. Soc. Am. B 19 2331