摘要We use the invariant eigen-operator method to study the higher-dimensional harmonic oscillator in a type of generalized noncommutative phase space, and obtain the explicit expression of the energy spectra of the noncommutative harmonic oscillator in arbitrary dimension. It is found that the energy spectra of the higher-dimensional noncommutative harmonic oscillator are equal to the sum of the energy spectra of some 1D harmonic oscillators and some 2D noncommutative harmonic oscillators. We believe that the properties of the harmonic oscillator may reflect some essence of the noncommutative phase space.
Abstract:We use the invariant eigen-operator method to study the higher-dimensional harmonic oscillator in a type of generalized noncommutative phase space, and obtain the explicit expression of the energy spectra of the noncommutative harmonic oscillator in arbitrary dimension. It is found that the energy spectra of the higher-dimensional noncommutative harmonic oscillator are equal to the sum of the energy spectra of some 1D harmonic oscillators and some 2D noncommutative harmonic oscillators. We believe that the properties of the harmonic oscillator may reflect some essence of the noncommutative phase space.
(Foundations of quantum mechanics; measurement theory)
引用本文:
LIN Bing-Sheng**;HENG Tai-Hua
. Energy Spectra of the Harmonic Oscillator in a Generalized Noncommutative Phase Space of Arbitrary Dimension[J]. 中国物理快报, 2011, 28(7): 70303-070303.
LIN Bing-Sheng**, HENG Tai-Hua
. Energy Spectra of the Harmonic Oscillator in a Generalized Noncommutative Phase Space of Arbitrary Dimension. Chin. Phys. Lett., 2011, 28(7): 70303-070303.
[1] Seiberg N and Witten E 1999 J. High Energy Phys. 09 032
[2] Douglas M R and Nekrasov N A 2001 Rev. Mod. Phys. 73 977
[3] Chaichian M, Presnajder P and Tureanu A 2005 Phys. Rev. Lett. 94 151602
[4] Ettefaghi M M and Haghighat M 2008 Phys. Rev. D 77 056009
[5] Snyder H S 1947 Phys. Rev. 71 38
[6] Connes A 1994 Noncommutative Geometry (New York: Academic)
[7] Doplicher S, Fredenhagen K and Roberts J E 1994 Phys. Lett. B 331 39
[8] Zupnik B M 2007 Class. Quantum Grav. 24 15
[9] Polychronakos A P 2001 J. High Energy Phys. 06 070
[10] Gomis J and Mehen T 2000 Nucl. Phys. B 591 265
[11] Nair V P and Polychronakos A P 2001 Phys. Lett. B 505 267
[12] Zhang J Z 2004 Phys. Lett. B 597 362
[13] Li K, Wang J H and Chen C Y 2005 Mod. Phys. Lett. A 20 2165
[14] Vakili B, Khosravi N and Sepangi H R 2007 Class. Quantum Grav. 24 931
[15] Bastos C, Bertolami O, Dias N C and Prata J N 2008 Phys. Rev. D 78 023516
[16] Heng T H, Lin B S and Jing S C 2010 Chin. Phys. Lett. 27 090302
[17] Hatzinikitas A and Smyrnakis I 2002 J. Math. Phys. 43 113
[18] Smailagic A and Spallucci E 2002 J. Phys. A: Math. Gen. 35 L363
[19] Kijanka A and Kosinski P 2004 Phys. Rev. D 70 127702
[20] Jellal A, Schreiber M and El Kinani E H 2005 Int. J. Mod. Phys. A 20 1515
[21] Lin B S, Jing S C and Heng T H 2008 Mod. Phys. Lett. A 23 445
[22] Ben Geloun J, Gangopadhyay S and Scholtz F G 2009 Europhys. Lett. 86 51001
[23] Dadic I, Jonke L and Meljanac S 2005 Acta Phys. Slovaca 55 149
[24] Wang J H, Li K and Liu P 2006 High Energy Phys. Nucl Phys. 30 387
[25] Fan H Y and Li C 2004 Phys. Lett. A 321 75
[26] Jing S C and Fan H Y 2005 Mod. Phys. Lett. A 20 691
[27] Jing S C and Lin B S 2008 Phys. Lett. A 372 7109