摘要The absorption spectra of lycopene in n-hexane and CS2 are measured under high pressure and the results are compared with β-carotene. In the lower pressure range, the deviation from the linear dependence on the Bayliss parameter (BP) for β-carotene is more visible than that for lycopene. With the further increase of the solvent BP, the 0-0 bands of lycopene and β-carotene red shift at almost the same rate in n-hexane; however, the 0-0 band of lycopene red shifts slower than that of β-carotene in CS2. The origins of these diversities are discussed taking into account the dispersion interactions and structures of solute and solvent molecules.
Abstract:The absorption spectra of lycopene in n-hexane and CS2 are measured under high pressure and the results are compared with β-carotene. In the lower pressure range, the deviation from the linear dependence on the Bayliss parameter (BP) for β-carotene is more visible than that for lycopene. With the further increase of the solvent BP, the 0-0 bands of lycopene and β-carotene red shift at almost the same rate in n-hexane; however, the 0-0 band of lycopene red shifts slower than that of β-carotene in CS2. The origins of these diversities are discussed taking into account the dispersion interactions and structures of solute and solvent molecules.
ZHANG Wei;LIU Wei-Long;ZHENG Zhi-Ren;HUO Ming-Ming;LI Ai-Hua;YANG Bin. Effect of Pressure on Absorption Spectra of Lycopene in n-Hexane and CS2 Solvents[J]. 中国物理快报, 2010, 27(1): 13301-013301.
ZHANG Wei, LIU Wei-Long, ZHENG Zhi-Ren, HUO Ming-Ming, LI Ai-Hua, YANG Bin. Effect of Pressure on Absorption Spectra of Lycopene in n-Hexane and CS2 Solvents. Chin. Phys. Lett., 2010, 27(1): 13301-013301.
[1] Bayliss N S 1950 J. Chem. Phys. 18 292 [2] Pol\'{\ivka T and Sundstr\"om V 2004 Chem. Rev. 104 2021 [3] Andersson P O et al 1991 Photochem. Photobiol. 54 353 [4] Kuki M et al 1994 Photochem. Photobiol. 59 116 [5] Nagae H et al 1994 J. Chem. Phys. 101 6750 [6] Qiao E W, Zheng H F and Xu B 2009 Chin. Phys. Lett. 26 010701 [7] Liu T C et al 2009 Chin. Phys. Lett. 26 070701 [8] Gao L L et al 2008 Chin. Phys. Lett. 25 2410 [9] Liu W L et al 2010 Chin. Phys. B 19 013102 [10] Liu W M et al 2006 Chin. Phys. 15 1725 [11] Ho Z Z et al 1981 J. Chem. Phys. 74 873 [12] Ho Z Z, Hanson R C and Lin S H 1985 J. Phys. Chem. 89 1014 [13] Ellervee A and Freiberg A 2002 Diffus. Defect Data,Pt. A 135 208 [14] Liu W L et al 2007 J. Phys. Chem. A 111 10044 [15] Liu W L et al 2008 J. Chem. Phys. 128 124501 [16] Mukamel S et al 1985 J. Phys. Chem. 89 201 [17] Torii H and Tasumi M 1993 J. Chem. Phys. 983697 [18] Stephens M D, Saven J G and Skinner J L 1997 J.Chem. Phys. 106 2129 [19] Fujita Y and Ikawa S 1995 J. Chem. Phys. 1039580 [20] Yamamoto S et al 2006 J. Chem. Phys. 124144511 [21] Dreuw A 2006 J. Phys. Chem. A 110 4592 [22] Niedzwiedzki D M et al 2006 J. Phys. Chem. B 110 22872 [23] Liu W L et al 2008 J. Phys. Chem. A 112 10580 [24] Niedzwiedzki D et al 2007 J. Phys. Chem. B 111 5984