Universal Quantum Cloning Machine in Circuit Quantum Electrodynamics
LV Dan-Dan1,2, LU Hong2, YU Ya-Fei1, FENG Xun-Li1,3, ZHANG Zhi-Ming1,3
1Laboratory of Photonic Information Technology, SIPSE and LQIT, South China Normal University, Guangzhou 5100062School of Science, Foshan University, Foshan 5280003Centre for Quantum Technologies and Department of Physics, National University of Singapore, 117543, Singapore
Universal Quantum Cloning Machine in Circuit Quantum Electrodynamics
LV Dan-Dan1,2, LU Hong2, YU Ya-Fei1, FENG Xun-Li1,3, ZHANG Zhi-Ming1,3
1Laboratory of Photonic Information Technology, SIPSE and LQIT, South China Normal University, Guangzhou 5100062School of Science, Foshan University, Foshan 5280003Centre for Quantum Technologies and Department of Physics, National University of Singapore, 117543, Singapore
摘要We propose a scheme for realizing the 1→2 universal quantum cloning machine (UQCM) with superconducting quantum interference device (SQUID) qubits in circuit quantum electrodynamics (circuit QED). In this scheme, in order to implement UQCM, we only need phase shift gate operation on SQUID qubits and the Raman transitions. The cavity number we need is only one. Thus our scheme is simple and has advantages in the experimental realization. Furthermore, both the cavity and the SQUID qubits are virtually excited, so the decoherence can be neglected.
Abstract:We propose a scheme for realizing the 1→2 universal quantum cloning machine (UQCM) with superconducting quantum interference device (SQUID) qubits in circuit quantum electrodynamics (circuit QED). In this scheme, in order to implement UQCM, we only need phase shift gate operation on SQUID qubits and the Raman transitions. The cavity number we need is only one. Thus our scheme is simple and has advantages in the experimental realization. Furthermore, both the cavity and the SQUID qubits are virtually excited, so the decoherence can be neglected.
[1] Wootters W K and Zurek W H 1982 Nature 299 802 [2] Buzek V and Hillery M 1996 Phys. Rev. A 54 1844 [3] Werner R F 1988 Phys. Rev. A 58 1827 [4] Zheng S B 2004 Chin. Phys. Lett. 21 1689 [5] Cerf N J 2000 Phys. Rev. Lett. 84 4497 [6] Fan H, Imai H, Matsumoto K and Wang X B 2003 Phys. Rev. A 67 02217 [7] Milman P, Ollivier H and Raimond J M 2003 Phys. Rev. A 67 012314 [8] Zou X B, Pahlke K and Mathis W 2003 Phys. Rev. A 67 024304 [9] Yang J, Yu Y F, Zhang Z M and Liu S H 2008 Phys. Rev. A 77 034302 [10] Fang B L, Hu G Y and Liu Y 2009 J. Phys. B 42 075501 [11] Chen H W, Zhou X Y, Suter D and Du J F 2007 Phys. Rev. A 75 012317 [12] Xu J S, Li C S, Chen L, Zou X B, and Guo G C 2008 Phys. Rev. A 78 032322 [13] Song K H 2009 Chin. Phys. Lett. 26 120302 [14] Du G, Lai B H, Yu Y F and Zhang Z M 2009 Chin. Phys. Lett. 26 104201 [15] Wallraff A,Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162 [16] Schuster D I, Houck A A, Schreier J A, Wallraff A, Gambetta J M, Blais A, Frunzio L, Majer J, Johnson B and Devoret M H 2007 Nature 445 515 [17] Feng Z B 2008 Phys. Rev. A 78 032325 [18] Wang Y D, Xue F, Song Z and Sun C P 2007 Phys. Rev. B 76 174519 [19] Siewert J, Brandes T and Falci G 2006 Opt. Commun 264 435 [20] Zheng S B and Guo G C 2001 Phys. Rev. A 63 044302 [21] Feng M 2002 Phys. Rev. A 66 054303 [22] Song K H,Zhou Z W and Guo G C 2005 Phys. Rev. A 71 052310 [23] Yang C P and Han S Y 2003 Phys. Lett. A 321 273 [24] Wu C F, Feng X L, Yi X X, Isabel, Chen I M and Oh C H 2008 Phys. Rev. A 78 062321 [25] Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320 [26] Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M and Schoelkopf R G 2007 Nature 449 443