Analysis of Chaotic Dynamics in a Two-Dimensional Sine Square Map
XU Jie1, LONG Ke-Ping1, FOURNIER-PRUNARET Dani`ele2, TAHA Abdel-Kaddous2, CHARGE Pascal2
1School of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu 6117312LATTIS, INSA, Toulouse University, 135 avenue de Rangueil 31077 Toulouse 4, France
Analysis of Chaotic Dynamics in a Two-Dimensional Sine Square Map
XU Jie1, LONG Ke-Ping1, FOURNIER-PRUNARET Dani`ele2, TAHA Abdel-Kaddous2, CHARGE Pascal2
1School of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu 6117312LATTIS, INSA, Toulouse University, 135 avenue de Rangueil 31077 Toulouse 4, France
We study an N-dimensional system based upon a sine map, which is related to the simplified model of an opto-electronic system. The system behavior is analyzed with the tools of nonlinear dynamics (bifurcations in the parameter plane, critical manifolds, basins of attraction, chaotic attractors). Our study relies on a two-dimensional system (N=2). It is interesting that this system shows the existence of bounded chaotic orbits, which can be considered for secure transmissions.
We study an N-dimensional system based upon a sine map, which is related to the simplified model of an opto-electronic system. The system behavior is analyzed with the tools of nonlinear dynamics (bifurcations in the parameter plane, critical manifolds, basins of attraction, chaotic attractors). Our study relies on a two-dimensional system (N=2). It is interesting that this system shows the existence of bounded chaotic orbits, which can be considered for secure transmissions.
XU Jie;LONG Ke-Ping;FOURNIER-PRUNARET Dani`ele;TAHA Abdel-Kaddous;CHARGE Pascal. Analysis of Chaotic Dynamics in a Two-Dimensional Sine Square Map[J]. 中国物理快报, 2010, 27(2): 20504-020504.
XU Jie, LONG Ke-Ping, FOURNIER-PRUNARET Dani`ele, TAHA Abdel-Kaddous, CHARGE Pascal. Analysis of Chaotic Dynamics in a Two-Dimensional Sine Square Map. Chin. Phys. Lett., 2010, 27(2): 20504-020504.
[1] Larger L and Fournier-Prunaret D 2005 European Conference on Circuit Theory and Design (Cork, Ireland 28 August--2 September 2005) I$\!$I p 161 [2] Larger L, Genin E, Udaltsov V S and Poinsot S 2005 J. Opt. Technol. 72 29 [3] Bischi G I, Mamman C and Gardini L 2000 Chaos, Solitons \& Fractals 11 543 [4] Xu J 2006 Congr\`es des Doctorants EDSYS (Tarbes, France 11 May 2006) p 35 [5] Charg\'e P, Xu J, Fournier-Prunaret D and Taha A K 2007 15th IEEE International Workshop on Nonlinear Dynamics of Electronic Systems (Tokushima, Japan 23--26 July 2007) p 141 [6] Mira C 1987 Chaotic Dynamics (Singapore: World Scientific) chap 1 p 59 [7] Carcass\`es J P 1993 Int. J. Bif. Chaos 3 869 [8] Mira C, Gardini L, Barugola A and Cathala J C 1996 World Scientific Series A 20 636 [9] Canovas J 2001 Chaos, Solitons \& Fractals 12 1259 [10] Mira C, Fournier-Prunaret D, Gardini L, Kawakami H and Cathala J C 1994 Int. J. Bifur. Chaos Appl. Sci. Engin. 4 343