摘要We present the results for the transition temperature of quantum chromodynamics with two degenerate flavors (Nf=2) of Wilson quarks as a function of a small baryon chemical potential μB from Monte Carlo simulations at κ=0.175, κ is the hopping parameter. By using the imaginary chemical potential for which the fermion determinant is positive and the Ferrenberg-Swendsen reweighting method, we perform simulations on lattice 83×4 with 4 being the temporal extent. By analytic continuation of the data to the real chemical potential μ, we obtain the transition temperature for the small chemical potential, and compare our results with others.
Abstract:We present the results for the transition temperature of quantum chromodynamics with two degenerate flavors (Nf=2) of Wilson quarks as a function of a small baryon chemical potential μB from Monte Carlo simulations at κ=0.175, κ is the hopping parameter. By using the imaginary chemical potential for which the fermion determinant is positive and the Ferrenberg-Swendsen reweighting method, we perform simulations on lattice 83×4 with 4 being the temporal extent. By analytic continuation of the data to the real chemical potential μ, we obtain the transition temperature for the small chemical potential, and compare our results with others.
WU Liang-Kai. Transition Temperature of Lattice Quantum Chromodynamics with Two Flavors with a Small Chemical Potential[J]. 中国物理快报, 2010, 27(2): 21101-021101.
WU Liang-Kai. Transition Temperature of Lattice Quantum Chromodynamics with Two Flavors with a Small Chemical Potential. Chin. Phys. Lett., 2010, 27(2): 21101-021101.
[1] Schmidt C 2006 Proc. Sci. LAT2006 021 [2] Rajagopal K 1999 Nucl. Phys. A 661 150 [3] de Forcrand P and Philipsen O 2002 Nucl. Phys. B 642 290 [4] D'Elia M and Lombardo M P 2003 Phys. Rev. D 67 014505 [5] Wu L K, Luo X Q and Chen H S 2007 Phys. Rev. D 76 034505 [6] Wu L K, Fang Y Z, Liu Y B, Liu Y and Luo Z H 2009 J. Phys. G 36 055005 [7] Bernard C et al 2008 Phys. Rev. D 77 014503 [8] Aoki Y, Fodor Z, Katz S D and Szabo K k 2006 J. High Energy Phys. 01 089 [9] Bernard C et al 2005 Phys. Rev. D 71 034504 [10] Cheng M et al 2006 Phys. Rev. D 74 054507 [11] Aoki Y, Fodor Z, Katz S D and Szabo K K 2006 Phys. Lett. B 643 46 [12] Cheng M {et al 2007 Phys. Rev. D 75 034506 [13] Maezawa Y et al 2007 J. Phys. G 34 S651 [14] Iwasaki Y, Kanaya K, Kaya S, Sakai S and Yoshie T 1996 Phys. Rev. D 54 7010 [15] Ali Khan A {et al 2001 Phys. Rev. D 63 034502 [16] Bornyakov V G et al 2005 Phys. Rev. D 71 114504 [17] Wu L K and Luo X Q 2007 Chin. Phys. Lett. 24 2769 [18] Pisarski D and Wilczek F 1984 Phys Rev D 29 338 [19] Hasenfratz P and Karsch F 1983 Phys. Lett. B 125 308 [20] Bernard C W et al 1994 Phys. Rev. D 49 3574 [21] Gottlieb s, Liu W, Toussaint D, Renken R L and Sugar R L 1987 Phys. Rev. D 35 3972 [22] Ferrenberg A M and Swendsen R H 1989 Phys. Rev. Lett. 63 1195 [23] Roberge A and Weiss N 1986 Nucl. Phys. B 275 734 [24] http://physics.utah.edu/$\sim$detar/milc/