Self-Collimation in Planar Photonic Crystals Fabricated by CMOS Technology
YANG Zhi-Feng, WU Ai-Min, FANG Na, JIANG Xun-Ya, LIN Xu-Lin, WANG Xi, ZOU Shi-Chang
State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050
Self-Collimation in Planar Photonic Crystals Fabricated by CMOS Technology
YANG Zhi-Feng, WU Ai-Min, FANG Na, JIANG Xun-Ya, LIN Xu-Lin, WANG Xi, ZOU Shi-Chang
State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050
摘要We report a self-collimating demonstration in planar photonic crystals (PhCs) fabricated in silicon-on-insulator (SOI) wafers using 0.18 μm silicon complimentary metal oxide semiconductor (CMOS) techniques. The emphasis was on demonstrating the self-collimation effect by using the standard CMOS equipment and process development of an optical test chip using a high-volume manufacturing facility. The PhCs are designed on the 230-nm-top-Si layer using a square lattice of air holes 280 nm in diameter. The lattice constant of the PhCs is 380 nm. The experimentally obtained wavelengths for self-collimation are in excellent agreement with theory.
Abstract:We report a self-collimating demonstration in planar photonic crystals (PhCs) fabricated in silicon-on-insulator (SOI) wafers using 0.18 μm silicon complimentary metal oxide semiconductor (CMOS) techniques. The emphasis was on demonstrating the self-collimation effect by using the standard CMOS equipment and process development of an optical test chip using a high-volume manufacturing facility. The PhCs are designed on the 230-nm-top-Si layer using a square lattice of air holes 280 nm in diameter. The lattice constant of the PhCs is 380 nm. The experimentally obtained wavelengths for self-collimation are in excellent agreement with theory.
[1] He J L, Jin Y, Hong Z and He S L 2008 Opt. Express 16 11077 [2] Shen X X, Yang X L, Cai L Z, Wang Y R, Dong G Y, Meng X F and Xu X F 2008 Chin. Phys. Lett. 25 3972 [3] Yu X T, Wei Z Y, Li H Q, Zhang Y W and Chen H 2007 Chin. Phys. Lett. 24 3447 [4] Kosaka H, Kawashima T, Tomita A, Notomi M, Tamamura T, Sato T and Kawakami S 1999 Appl. Phys. Lett. 74 1212 [5] Wu L J, Mazilu M and Krauss T F 2003 J. Lightwave Technol. 21 561 [6] Prather D W, Shi S Y, Pustai D M, Chen C H, Venkataraman S, Sharkawy A, Schneider G J and Murakowski J 2004 Opt. Lett. 29 50 [7] Pustai D M, Shi S Y, Chen C H, Sharkawy A and Prather D W 2004 Opt. Express 12 1823 [8] Shi S Y, Sharkawy A, Chen C H, Pustai D M and Prather D W 2004 Opt. Lett. 29 617 [9] Rakich R T, Dahlem M S, Tandon S, Ibanescu M, Marin S, Petrich P S, Joannopoulos J D, Kolodziejski L A and Ippen E P 2006 Nature Mater. 5 93 [10] Li Z Y and Lin L L 2003 Phys. Rev. B 68 245110 [11] He S L, Ruan Z C, Chen L and Shen J Q 2004 Phys. Rev. B 70 115113 [12] Yu X F and Fan S H 2003 Appl. Phys. Lett. 83 3251 [13] Yamashita T and Summers C J 2005 IEEE J. Sel. Areas Commun. 23 1341 [14] Chen X Y, Li H, Qiu Y S, Wang Y F and Ni B 2008 Chin. Phys. Lett. 25 4307 [15] Vieu C, Carcenac F, Pepin A, Chen Y, Mejias M, Lebib A, Manin-Ferlazzo M, Couraud L and Launois H 2000 Appl. Surf. Sci. 164 111 [16] Li Z Y and Xia Y N~2001 Phys. Rev. B 64 153108 [17] Bogaerts W, Wiaux V, Taillaert D, Beckx S, Luyssaert B, Bienstman P and Baets R 2002 J. Sel. Top. Quantum Electron. 8 928 [18] Okamura Y, Shinji S and Yamamoto S 1984 Appl. Optics 23 3892